首页 | 本学科首页   官方微博 | 高级检索  
     

一类立方非线性型八阶常微分方程周期解的多重存在性
引用本文:高利辉,李成岳. 一类立方非线性型八阶常微分方程周期解的多重存在性[J]. 中央民族大学学报(自然科学版), 2008, 17(1): 13-18
作者姓名:高利辉  李成岳
作者单位:中央民族大学,理学院,北京,100081
基金项目:中央民族大学校科研和校改项目
摘    要:本文运用极小化定理和Clark定理研究了满足边界条件u(0)=u″(0)=u(iv)(0)=u(vi)(0)=0和u(L)=u″(L)=u(iv)(L)=u(vi)(L)=0的一类立方非线性型八阶常微分方程u(viii)+Au(vi)+Bu(iv)+Cu″+Du-u3=0多重非平凡周期解的存在性.

关 键 词:八阶微分方程  周期解  极小化定理  Clark定理
文章编号:1005-8036(2008)01-0013-06
修稿时间:2007-08-23

Existence and Multiplicity of Periodic Solutions for a Class of Eighth-order Ordinary Differential Equations with Cubic Nonlinearity
GAO Li-hui,LI Cheng-yue. Existence and Multiplicity of Periodic Solutions for a Class of Eighth-order Ordinary Differential Equations with Cubic Nonlinearity[J]. Journal of The Central University for Nationalities(Natural Sciences Edition), 2008, 17(1): 13-18
Authors:GAO Li-hui  LI Cheng-yue
Affiliation:( College of Science, Central University for Nationalities, Beifing 100081, China)
Abstract:The existence and multiplicity of nontrival periodic solutions for a class of eighth-order ordinary differential equations u^(vill) + Au^(vi) + Bu^(iv) + Cu" + Du - u^3 = 0 with the boundary conditions u(0) = u"(0) = u^(iv) (0) = u^(vi) (0) = 0,u(L) = u"(L) = u^(iv) (L) = u^(Vi) (L) = 0 are studied by using a minimization theorem and Clark's theorem.
Keywords:Eighth-order DE  minimization theorem  periodic solutions  Clark's theorem
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号