首页 | 本学科首页   官方微博 | 高级检索  
     

地质突变条件下基于组合模型的围岩等级和TBM掘进参数预测
引用本文:满轲,曹子祥,刘晓丽,宋志飞,柳宗旭,刘汭琳,武立文. 地质突变条件下基于组合模型的围岩等级和TBM掘进参数预测[J]. 河海大学学报(自然科学版), 2024, 52(1): 55-62
作者姓名:满轲  曹子祥  刘晓丽  宋志飞  柳宗旭  刘汭琳  武立文
作者单位:北方工业大学土木工程学院,北京100144;清华大学水沙科学与水利水电工程国家重点试验室,北京100084
基金项目:国家重点研发计划项目(2018YFC1504801,2018YFC1504902);清华大学水沙科学与水利水电工程国家重点实验室资助项目(2019-KY-03);北方工业大学毓杰项目(216051360020XN199/006)
摘    要:为了提高硬岩隧道掘进机(TBM)施工的安全性和智能化,基于TBM掘进数据,提出了一种将双向长短期记忆(BiLSTM)网络与支持向量机回归(SVR)算法相结合的可以同时进行围岩等级和TBM掘进参数预测的组合模型(BiLSTM-SVR模型)。实例验证结果表明:BiLSTM-SVR模型对围岩等级的预测准确度较高,均方根误差均小于0.026 5、平均绝对百分比误差均小于0.95%;BiLSTM-SVR掘进参数预测中,推力和扭矩的预测准确度最高,净掘进速度和开挖比能的预测准确度最低;BiLSTM-SVR模型比BiLSTM模型和SVR模型的掘进参数预测准确度有较大的提高,因此进行单一模型的组合可以有效提高模型预测的准确度和鲁棒性。

关 键 词:TBM  地质突变  围岩等级  掘进参数  BiLSTM-SVR模型
收稿时间:2023-01-18

Prediction of surrounding rock grades and TBM tunnelling parameters based on combined model under geological mutation conditions
MAN Ke,CAO Zixiang,LIU Xiaoli,SONG Zhifei,LIU Zongxu,LIU Ruilin,WU Liwen. Prediction of surrounding rock grades and TBM tunnelling parameters based on combined model under geological mutation conditions[J]. Journal of Hohai University (Natural Sciences ), 2024, 52(1): 55-62
Authors:MAN Ke  CAO Zixiang  LIU Xiaoli  SONG Zhifei  LIU Zongxu  LIU Ruilin  WU Liwen
Affiliation:College of Civil Engineering, North China University of Technology, Beijing 100144, China;State Key Laboratory of Hydroscience and Hydraulic Engineering, Tsinghua University, Beijing 100084, China
Abstract:In order to enhance the safety and intelligence in the tunnelling of hard rock tunnel boring machines (TBM), this paper proposed a prediction model (BiLSTM-SVR model) that combined the bidirectional long short-term memory (BiLSTM) neural network with the support vector regression (SVR) algorithm, and the proposed model was capable of concurrently predicting surrounding rock grades and TBM tunnelling parameters based on the TBM tunnelling data. Example verification results show that the BiLSTM-SVR model demonstrates high accuracy in predicting surrounding rock grades, with the root mean square error (RMSE) and the mean absolute percentage error (MAPE) both being less than 0.026 5 and 0.95%, respectively. In the prediction of tunnelling parameters using the BiLSTM-SVR model, the accuracy in predicting thrust and torque is the highest, while the accuracy in predicting net excavation speed and excavation efficiency is the lowest. The proposed model exhibits significantly improved accuracy in predicting tunnelling parameters compared to the BiLSTM model and the SVR model individually, thereby combining single model effectively enhances the accuracy and robustness of model prediction.
Keywords:TBM   geological mutation   surrounding rock grades   tunnelling parameters   BiLSTM-SVR model
点击此处可从《河海大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《河海大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号