首页 | 本学科首页   官方微博 | 高级检索  
     

Improving reflectance estimation by BRDF-consistent region clustering
引用本文:ZHANG Hongxin,WU Xiangyang,LIN Steve,BAO Hujun. Improving reflectance estimation by BRDF-consistent region clustering[J]. 自然科学进展(英文版), 2006, 16(3): 313-320
作者姓名:ZHANG Hongxin  WU Xiangyang  LIN Steve  BAO Hujun
作者单位:1. State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou 310027, China; 2. Visual Computing Group, Microsoft Research Asia, Beijing 100080, China
基金项目:国家自然科学基金;国家自然科学基金;国家重点基础研究发展计划(973计划)
摘    要:Previous studies in reflectance estimation generally require prior segmentation of an image into regions of uniform reflectance. Due to the measurement noise and limited sampling of the BRDF (bi-directional reflectance function) directions, such estimated results of reflectance are not accurate. In this paper, we propose a novel method for reducing uncertainty in reflectance estimates by merging image regions which have consistent reflectance observations. Each image region acts as a reflectance subspace, so merging of the image regions can result in subspace reduction. We propose a Bayesian segmentation framework to decrease the reflectance uncertainty by using novel merging criteria. Finally, a maximum likelihood reflectance estimation is made for each resulting image region. Experimental results verify the feasibility and superiority of this reflectance-oriented region merging method.

关 键 词:texture   shading   grouping and segmentation   reflectance estimation   BRDF uncertainty.

Improving reflectance estimation by BRDF-consistent region clustering
ZHANG Hongxin,WU Xiangyang,LIN Steve,BAO Hujun. Improving reflectance estimation by BRDF-consistent region clustering[J]. Progress in Natural Science, 2006, 16(3): 313-320
Authors:ZHANG Hongxin  WU Xiangyang  LIN Steve  BAO Hujun
Affiliation:1. State Key Laboratory of CAD&CG,Zhejiang University,Hangzhou 310027,China
2. Visual Computing Group,Microsoft Re-search Asia,Beijing 100080,China
Abstract:Previous studies in reflectance estimation generally require prior segmentation of an image into regions of uniform reflectance. Due to the measurement noise and limited sampling of the BRDF (bi-directional reflectance function) directions, such estimated results of reflectance are not accurate. In this paper, we propose a novel method for reducing uncertainty in reflectance estimates by merging image regions which have consistent reflectance observations. Each image region acts as a reflectance subspace, so merging of the image regions can result in subspace reduction. We propose a Bayesian segmentation framework to decrease the reflectance uncertainty by using novel merging criteria. Finally, a maximum likelihood reflectance estimation is made for each resulting image region. Experimental results verify the feasibility and superiority of this reflectance-oriented region merging method.
Keywords:texture  shading  grouping and segmentation  reflectance estimation  BRDF uncertainty
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《自然科学进展(英文版)》浏览原始摘要信息
点击此处可从《自然科学进展(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号