摘 要: | 面向电站锅炉及工业锅炉烟气余热深度利用重大节能减排需求,开展低温(300℃)烟气余热深度利用重大基础理论研究和关键技术攻关,对于节省化石能源消耗,提高燃料综合利用效率,减少CO2及有害气体SOx和NOx排放,节省水资源等极为重要。烟气余热深度利用是化石能源绿色利用的重要途径。针对我国现有低温烟气余热利用效率低,成本高,缺乏有效评价方法,深度利用存在露点腐蚀等技术难题,融合能源、经济、材料等多学科交叉,从系统和部件层面凝练2个关键科学问题:(1)能量利用效率-投资成本-运行经济性热经济学理论建立新型热力学循环,发展逆向计算机辅助分子设计新方法,结合多目标最优控制理论,定量表征新的循环工质应具有的综合优良性能。建立热力学不可逆性在部件间的优化匹配原则,获得利用效率和投资成本间的最佳平衡。拓展热经济学理论,建立低品位余热直接和间接利用系统的评价和热学优化的理论体系,建立全面考虑大规模烟气余热利用效率、投资成本和运行经济性等多准则的节能设计评价理论。(2)多相流动结构与能量传递及转换的协同机理与调控原理揭示多组分多相流动结构与能量传递及转换的协同机制,建立数学模型。创新非能动结构设计,改善和控制流动结构,提高有利于能量传递与转换所对应流动结构的时空发生概率,提高部件性能。建立烟气冷凝式换热器、有机工质液体分离式冷凝器、化学热泵等设计理论和方法,建立并完善单螺杆膨胀机设计理论。该项目将突破烟气余热深度利用中的露点腐蚀等技术瓶颈,提出大型燃煤锅炉烟气余热深度利用总体解决方案,发展新一代冷凝式省煤器等关键技术,在较低成本下使电站锅炉效率提高1%~2%。发展新一代低温烟气余热有机朗肯循环热功转换系统,在较低成本下效率比国际现有技术提高20%,工业锅炉燃料综合利用效率提高5%~10%。围绕2个关键科学问题,设置6个课题:(1)低品位能源利用热力学基础及评价;(2)烟气介质复杂热质传递与露点腐蚀机理及防治;(3)多组分有机工质相变传热机理及设计优化;(4)膨胀机中多组分多相流动与全流膨胀机理;(5)低温余热品位提升及能量储存;(6)余热利用系统集成、控制及运行。
|