首页 | 本学科首页   官方微博 | 高级检索  
     

跳分形过程下延展期权定价
引用本文:彭斌,彭菲. 跳分形过程下延展期权定价[J]. 华东师范大学学报(自然科学版), 2012, 2012(3): 30-40
作者姓名:彭斌  彭菲
作者单位:1. 中国人民大学商学院,北京,100872
2. 大不列颠哥伦比亚大学 电子计算机学院,温哥华V6T 1Z4,加拿大
摘    要:当标的资产遵循跳分形过程时, 构建了延展期权的评估框架. 首先, 在风险中性环境里, 对标的资产发生跳跃次数的收益求条件期望现值, 导出了延展一期的看涨期权解析定价公式, 并探讨了公式的一些特殊情形. 然后, 将定价公式延展到,$M$,期, 该延展期权价值在,$M$,趋于无穷极限状态时, 将收敛于永久延展期权. 提出了一种简单有效的两点外推法求极限. 最后, 提供数值结果, 阐述了定价表达式的简单实用.

关 键 词:跳分形过程  延展期权  两点外推技术
收稿时间:2010-12-01

Pricing extendible option under jump-fraction process
PENG Bin , PENG Fei. Pricing extendible option under jump-fraction process[J]. Journal of East China Normal University(Natural Science), 2012, 2012(3): 30-40
Authors:PENG Bin    PENG Fei
Affiliation:1.School of Business,Renmin University,Beijing 100872,China; 2.Electrical & Computer Engineering,UBC,Vancouver B.C.V6T 1Z4,Canada)
Abstract:A valuation framework for extendible options is constructed when the underlying asset obeys a fractional process with jump.Under the risk neutral environment,an analytic formula for the call option with one extendible maturity is derived by solving the expected present value of cashflow and conditioning jumps for the underlying asset.Moreover,some special cases of the formula are discussed.These results are generalized to the option withMextendible maturity.Its value will converge in the limit to the value of perpetual extendible option as the number of extendible maturity increases to infinite.Extrapolated technique with two points is presented to yield a simple and efficient computation procedure to calculate the limit.Numerical results are provided to illustrate provided that our pricing expressions are easy to implement.
Keywords:jump fraction process  extendible option  extrapolated technique with two points
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《华东师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华东师范大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号