摘 要: | 文章得到带有强迫项的中立型高阶微分方程(x(t) - p(t) x(t-τ) ) ( n) +Q(t) G(x(t-σ) ) =f (t)在条件(i) G∈ C(R,R) ,x G(x) >0 (x≠ 0 ) ,且 G是不减的 ;(ii)τ≥ 0 ,σ≥ 0 ,Q∈ C([0 ,∞ ) ,[0 ,∞ ) ) ,p∈ C([0 ,∞ ) ,R) ,且 0≤ p(t)≤ p1 <1;(iii) f∈ C([0 ,∞ ) ,R)且存在 F∈ Cn([0 ,∞ ) ,R)使得 F( n) (t) =f(t) ,limt→∞F(t) =M∈ R存在下所有非振动解当 t→∞时趋于零的充分条件和必要条件分别为∫∞0Q(t) dt=∞和∫∞0sn- 1 Q(s) ds=∞ .
|