首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波分解的语音自适应压缩感知
引用本文:唐力. 基于小波分解的语音自适应压缩感知[J]. 南京邮电大学学报(自然科学版), 2012, 32(2): 64-68
作者姓名:唐力
作者单位:南京邮电大学宽带无线通信与传感网技术教育部重点实验室,江苏南京,210003
基金项目:国家重点基础研究发展计划(973计划)(2011CB302903);国家自然科学基金(60971129)资助项目
摘    要:根据语音信号经过小波分解后低频分量和高频分量的特点,提出分别对他们进行自适应压缩感知。首先对信号的低频分量用训练的过完备基进行稀疏分解,降低了稀疏分解过程中的计算量。然后详细描述了改进自适应观测矩阵的产生,以及对低频和高频分量分别进行自适应观测。最后通过OMP重构算法分别对低频和高频分量进行重构,通过小波合成还原出原始信号。实验表明,语音信号在基于小波分解的自适应压缩感知方案中具有良好的重构性能。

关 键 词:压缩感知  小波分解  K-SVD  稀疏性

Adaptive Speech Compressed Sensing Based on Wavelet Transform
TANG Li. Adaptive Speech Compressed Sensing Based on Wavelet Transform[J]. JJournal of Nanjing University of Posts and Telecommunications, 2012, 32(2): 64-68
Authors:TANG Li
Affiliation:TANG Li Key Lab of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
Abstract:Based on the characteristics coefficients of speech signal at low frequency and high frequency after wavelet transformation,this paper proposes adaptive speech compressed sensing.First,the trained overcomplete dictionary is applied to the low frequency coefficients after wavelet transformation to decrease the computation of the sparse decomposition.Second,an improved adaptive sensing matrix is proposed,which is applied to the low frequency and high frequency wavelet transformation respectively.At last,OMP reconstruct algorithm is employed to reconstruct the wavelet transformation coefficients,and then the signal can be finally recovered through Wavelet synthesis.Simulation results demonstrate that,based on wavelet transform,the approach using the adaptive speech compressed sensing has a good performance in reconstruction.
Keywords:compressed sensing  wavelet transform  K-SVD  sparsity
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号