首页 | 本学科首页   官方微博 | 高级检索  
     

基于非负矩阵分解的阴影检测方法
引用本文:周鹏宇,杨 欣,周大可,刘 加. 基于非负矩阵分解的阴影检测方法[J]. 吉林大学学报(信息科学版), 2013, 31(6): 575-581
作者姓名:周鹏宇  杨 欣  周大可  刘 加
作者单位:南京航空航天大学 自动化学院, 南京 210016
摘    要:针对以往的矩阵分解方法不能保证分解结果非负的问题, 根据非负矩阵分解(NMF: Non negative Matrix Factorization)结果非负的特点, 提出了基于NMF的阴影检测方法, 并以此为基础将进一步引入的分块非负矩阵分解(BNMF: Block Non negative Matrix Factorization)应用于阴影检测。通过NMF/BNMF提取训练样本中阴影的亮度特征, 再根据特征识别测试样本中的阴影区域。实验结果表明,与基于奇异值分解方法相比, 该算法的阴影检测细节更清晰, 具有更好的效果。

关 键 词:阴影检测  非负矩阵分解  分块非负矩阵分解  

Method of Shadow Detection Based on Non-Negative Matrix Factorization
ZHOU Peng-yu,YANG Xin,ZHOU Da-ke,LIU Jia. Method of Shadow Detection Based on Non-Negative Matrix Factorization[J]. Journal of Jilin University:Information Sci Ed, 2013, 31(6): 575-581
Authors:ZHOU Peng-yu  YANG Xin  ZHOU Da-ke  LIU Jia
Affiliation:College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract:Previous matrix factorization algorithms can not guarantee the nonnegativity of results. Inspired by the nonnegative character of NMF (Non-negative Matrix Factorization), NMF is utilized to detect shadow areas. The BNMF (Block Non negative Matrix Factorization) is introduced for shadow detection. The brightness features of shadow points of training samples are extracted by NMF or BNMF method. The shadow areas of testing sample are recognized by features. The results demonstrate that the approach preserves edges clearer than the method based on singular value decomposition.
Keywords:shadow detection  non-negative matrix factorization (NMF)  block non-negative matrix factorization (BNMF)  
本文献已被 CNKI 等数据库收录!
点击此处可从《吉林大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号