首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVM的金融类钓鱼网页检测方法
引用本文:张峰,胡向东,林家富,郭智慧,付俊,刘可. 基于SVM的金融类钓鱼网页检测方法[J]. 重庆邮电大学学报(自然科学版), 2017, 29(6): 806-813. DOI: 10.3979/j.issn.1673-825X.2017.06.015
作者姓名:张峰  胡向东  林家富  郭智慧  付俊  刘可
作者单位:1. 中国移动研究院,北京,100033;2. 重庆邮电大学自动化学院,重庆,400065
基金项目:教育部—中国移动联合研究基金(MCM20150202)
摘    要:针对金融服务领域面临的严峻信息安全挑战,以及现有钓鱼网页检测方法的不足,提出一种基于支持向量机(support vector machine,SVM)的金融类钓鱼网页检测方法.采用网页渲染去除常见的页面特征伪装,提取统一资源定位符(uniform resource locator,URL)信息特征、页面文本特征、页面表单特征以及页面logo图像特征,构建特征向量训练SVM分类器模型,实现对金融类钓鱼网页的识别.在特征提取过程中,利用适合中文的多模式匹配算法AC_SC(AC suitable for chinese)提高文本匹配效率,并采用加速鲁棒特征(speeded-up robust feature,SURF)算法实现logo图像的特征提取与匹配.多方法实验结果对比表明,该方法针对性更强,能达到99.1%的检测准确率、低于0.86%的误报率.

关 键 词:钓鱼检测  支持向量机(SVM)  金融网页  特征提取  多模式匹配
收稿时间:2017-02-18
修稿时间:2017-09-20

Method of detecting the financial phishing webpage based on SVM
ZHANG Feng,HU Xiangdong,LIN Jiafu,GUO Zhihui,FU Jun and LIU Ke. Method of detecting the financial phishing webpage based on SVM[J]. Journal of Chongqing University of Posts and Telecommunications, 2017, 29(6): 806-813. DOI: 10.3979/j.issn.1673-825X.2017.06.015
Authors:ZHANG Feng  HU Xiangdong  LIN Jiafu  GUO Zhihui  FU Jun  LIU Ke
Affiliation:Research Institute of China Mobile, Beijing 100033, P.R.China,School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R.China,School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R.China,Research Institute of China Mobile, Beijing 100033, P.R.China,Research Institute of China Mobile, Beijing 100033, P.R.China and School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R.China
Abstract:Aiming at the serious information security challenges in the financial service field, and the shortcomings of existing phishing webpage detection methods, a financial phishing webpage detection method based on support vector machine (SVM) was proposed. The method uses webpage rendering to remove common feature camouflage of page, then sets up feature vector according to extract several features including uniform resource locator (URL), text messages, form of page, and logo image. Next, it trains the SVM classifier model by feature vector, and the method realizes the recognition of financial phishing webpage. In the process of features extraction, the method uses multiple pattern matching algorithm AC_SC (AC suitable for chinese) to improve efficiency of text matching, and finishes logo image features extraction and matching by speeded-up robust feature (SURF) algorithm. It shows that the proposed method reveals better in pertinence according to experiment of several methods, and it can achieve 99.1% detection precision and not higher than 0.86% false positive rate.
Keywords:phishing detection   support vector machine   financial web page   feature extract   multi-pattern matching
本文献已被 万方数据 等数据库收录!
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号