首页 | 本学科首页   官方微博 | 高级检索  
     

“矩阵乘法”课堂教学研究
引用本文:孙兵,谷德峰,屈龙江,海昕. “矩阵乘法”课堂教学研究[J]. 长沙大学学报, 2013, 27(2): 127-128
作者姓名:孙兵  谷德峰  屈龙江  海昕
作者单位:国防科学技术大学理学院,湖南长沙,410073
摘    要:理解线性方程组及矩阵的初等行变换对掌握线性代数核心思想和概念至关重要.课堂教学中,首先介绍矩阵左乘列向量的规则并引入线性方程组的矩阵记号,其次介绍具有相同系数矩阵的线性方程组的矩阵记法,在此基础上引入矩阵的乘法及矩阵求逆的初等变换法.实践表明,这样的安排具有比较好的教学效果.

关 键 词:线性代数  矩阵乘法  初等行变换  矩阵的逆

Study on the Teaching of Matrix Multiplication
SUN Bing , GU Defeng , QU Longjiang , HAI Xin. Study on the Teaching of Matrix Multiplication[J]. Journal of Changsha University, 2013, 27(2): 127-128
Authors:SUN Bing    GU Defeng    QU Longjiang    HAI Xin
Affiliation:(College of Science, National University of Defense Technology, Changsha Hunan 410073, China)
Abstract:It is essential in Linear Algebra to solve the linear systems and to understand the elementary row transformation of matrices. In the class, we first introduce the rule of left multiplication of a vector by a matrix and the notation of linear systems by matrices, and then, we introduce the notation of several systems with the same coefficient matrix. On this basis, we define the multiplication of matrices and the elementary transformation to find the inverse of a square matrix.
Keywords:Linear Algebra  matrix multiplication  elementary row transformation  inverse of a square matrix
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号