摘 要: | 1 引言及主要结果Arveson 把经典的Hahn—Banach扩张定理推广到了C-代数的自伴线性闭子空间上.从此,许多数学工作者对Arveson扩张定理作了推广,下述结果属于G,Wittstock,命题1.1(见文献[2]定理4.2)设X是-算子空间,A是一有单位元的 C-代数且A(?)X,若(?):X→B(H)是一完全收缩映射,则存在完全收缩映射(?):A→(H)使得(?)|X=(?)且||(?)||_cb=||(?)||_cb利用该命题易得:推论1.1 设X与Y均为算子空间且Y(?)X,若(?):Y→(H)是一完全收缩映射,则存在完全收缩映射(?):x→B(H)使得(?)|Y=(?)且||(?)||_cb=||(?)||_cb但命题1.1中的(?)的唯一性问题从未被人涉及,本文用自由C-代数和遗传C-代数为工具,给出了命题1.1中扩张(?)对任何Hilbert空间H均具唯一性的一个充要条件,即下述的:定理1.1 设X和Y均为算子空间,且Y(?)X,1∈X,则下述等价:(1)对每个Hilbert空间H及每个完全收缩映射(?):Y→B(H),都唯一存在完全收缩扩张映射(?):x→B(H)使得(?)|Y=(?)且||(?)||_cb=||(?)||_cb(2)C(Y)是C(X)的遗传C-子代数,定理1.2 记号同于命题1.1,则对每个Hilbert空间H,(?)均唯一存在的充要条件为:I(X)是A的遗传C-子代数,其中I(X)是由X生成的A的C-子代数,
|