首页 | 本学科首页   官方微博 | 高级检索  
     

Lehmer型同余式在多重调和级数上的推广
引用本文:陈笑缘. Lehmer型同余式在多重调和级数上的推广[J]. 杭州师范学院学报(自然科学版), 2008, 7(5): 327-329
作者姓名:陈笑缘
作者单位:浙江商业职业技术学院基础部,浙江杭州310053
摘    要:证明了若a为正整数且满足2na≤p-4,则∑ 1≤ll〈…ln≤p-1/2 1/ll^2a…ln^2a≡(-1)n+1 1/n(1-1/2^2na+1)2^2na 2na/2na+1 Bp-a-1p(mod p^2)其中a=2a1+…+2an.推广了Lehmer关于幂次和的一类同余式,同时给出更多关于调和级数的同余式.

关 键 词:多重调和级数  同余式  Bernoulli数

The Generalization of the Type of the Lehmer's Congruence on Multiple Harmonic Sums
Chen Xiao-yuan. The Generalization of the Type of the Lehmer's Congruence on Multiple Harmonic Sums[J]. Journal of Hangzhou Teachers College(Natural Science), 2008, 7(5): 327-329
Authors:Chen Xiao-yuan
Affiliation:CHEN Xiao-yuan (Department of Basic Courses, Zhejiang Vocational College of Commerce, Hangzhou 310053 ,China)
Abstract:The paper proves that if a is positive integer satisfing 2na≤p-4,then ∑ 1≤ll〈…ln≤p-1/2 1/ll^2a…ln^2a≡(-1)n+1 1/n(1-1/2^2na+1)2^2na 2na/2na+1 Bp-a-1p(mod p^2),where a=2a1+…+2an This generalizes a class of congruences involving the harmonic sums obtained by Lehmer. The paper also shows more congruences on harmonic sums.
Keywords:multiple harmonic sums  congruences  Bernoulli numbers
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号