首页 | 本学科首页   官方微博 | 高级检索  
     

既有建筑围护结构节能改造多目标优化设计
引用本文:丁志坤,王展. 既有建筑围护结构节能改造多目标优化设计[J]. 科学技术与工程, 2024, 24(17): 7269-7277
作者姓名:丁志坤  王展
作者单位:滨海城市韧性基础设施教育部重点实验室(深圳大学);人工智能与数字经济广东省实验室深圳;深圳大学中澳BIM与智慧建造联合研究中心;深圳市地铁地下车站绿色高效智能建造重点实验室
基金项目:深圳市科技计划资助(JCYJ20190808115809385),深圳市科技计划资助高等院校稳定支持计划重点项目(No.20220810160221001),国家自然科学基金项目(面上项目,重点项目,重大项目)
摘    要:对既有建筑进行节能改造是减少建筑业能源消耗和碳排放的重要策略之一,本文提出了BP神经网络与蒙特卡洛—非支配排序遗传算法(MC-NSGA Ⅲ)相结合的多目标优化方法,对建筑围护结构改造参数进行优化设计。基于DesignBuilder软件进行建筑性能模拟,得到样本数据集;利用BP神经网络学习数据集,建立建筑围护结构与性能指标之间的预测模型,作为各个目标的适应度函数;利用蒙特卡洛方法对交叉概率和变异概率进行不确定性分析,建立MC-NSGA Ⅲ多目标优化模型,得到Pareto最优解集;最后利用理想点法找到围护结构设计参数的最优组合。以某科教综合楼为例,验证了该方法的可行性和有效性。结果表明,提出的方法可在多种改造设计方案中找到一个综合权衡的最优方案,研究结果可为建筑改造规划与设计提供参考。

关 键 词:建筑改造  多目标优化  BP神经网络  NSGA Ⅲ  蒙特卡洛
收稿时间:2023-06-20
修稿时间:2023-10-20

Multi-objective optimization design forenvelope energy-saving retrofit of existing building
Ding Zhikun,wangzhan. Multi-objective optimization design forenvelope energy-saving retrofit of existing building[J]. Science Technology and Engineering, 2024, 24(17): 7269-7277
Authors:Ding Zhikun  wangzhan
Affiliation:Key Laboratory of Coastal Urban Resilient Infrastructures (Shenzhen University); Guangdong Laboratory of Artificial Intelligence and Digital Econonmy (SZ);Sino-Australia Joint Research Center in BIM and Smart Construction; Shenzhen Key Laboratory of Green, Efficient and Intelligent Construction of Underground Metro Station
Abstract:Building retrofit is an important strategy to reduce energy consumption and carbon emission in building industry. In order to optimize the design of building envelope retrofit, a multi-objective optimization method combining BP neural network and Monte Carlo-Non-Dominated Ranking Genetic Algorithm (MC-NSGA Ⅲ) was proposed in this paper. The DesignBuilder software was utilized for building performance simulation to obtain sample data. The BP neural network was utilized to establish prediction models between building envelope and building performance. The prediction models were used as the fitness function for each objective. Monte Carlo Method was used for uncertainty analysis of crossover and variation probabilities. The MC-NSGA Ⅲ multi-objective optimization model was constructe to obtain the Pareto front. Then ideal point method was utilized to discover the optimal parameters combination. A case study of a school building in China was used to demonstrate the feasibility and effectiveness. The results indicate that the proposed method can find a comprehensive trade-off solution and provide references for building retrofit planning and design.
Keywords:building retrofit   Multi-objective optimization   BP neural network   NSGA Ⅲ   Monte Carlo
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号