首页 | 本学科首页   官方微博 | 高级检索  
     

SN型多元混合切触有理插值
引用本文:苏本跃,盛敏,唐烁,朱功勤,胡万宝. SN型多元混合切触有理插值[J]. 中国科学技术大学学报, 2009, 39(6)
作者姓名:苏本跃  盛敏  唐烁  朱功勤  胡万宝
作者单位:1. 安庆师范学院计算机与信息学院,安徽安庆,246011
2. 安庆师范学院数学系,安徽安庆,246011;合肥工业大学计算机与信息学院,安徽合肥,230009
3. 合肥工业大学应用数学研究所,安徽合肥,230009
4. 安庆师范学院数学系,安徽安庆,246011
基金项目:国家自然科学基金,the Natural Science Research Funds ofEducation Department of Anhui Province
摘    要:提出了一类定义在矩形网格上的二阶多元混合切触有理插值格式,记作SNm,n(x,y).新的插值格式由Salzer型插值连分式和扩展的Newton插值多项式综合构造而成.数值例子显示相对于多项式插值格式,利用混合切触有理插值格式SNm,n(x,y)可以得到较小的逼近误差,特别地,对于存在渐近线的被插函数,实例表明新方法比传统的多项式方法具有更好的逼近效果.

关 键 词:多元混合插值  切触有理插值

SN-type multivariate blending osculatory rational interpolation
SU Ben-yue,SHENG Min,TANG Shuo,ZHU Gongqin,HU Wan-bao. SN-type multivariate blending osculatory rational interpolation[J]. Journal of University of Science and Technology of China, 2009, 39(6)
Authors:SU Ben-yue  SHENG Min  TANG Shuo  ZHU Gongqin  HU Wan-bao
Abstract:A scheme for multivariate blending osculatory rational interpolation of order two has been constructed based on rectangular grids. The new interpolation function is denoted by SNm,n(x,y) and can be constructed by incorporating both Salzer's interpolating continued fractions and the expansive Newton's interpolating polynomials. Furthermore, numerical examples are illustrated to show the approximation effects using the multivariate osculatory rational interpolation method by the constructed function SNm,n(x,y) in the end. Especially, in the case of sharp curves, illustration shows that the presented method demonstrates a better approximation effect, whereas it is sometimes inoperative using polynomial interpolation methods.
Keywords:SNMORIs  multivariate blending interpolation  SNMORIs  osculatory rational interpolation
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号