首页 | 本学科首页   官方微博 | 高级检索  
     

基于Kalman/UKF组合训练神经网络的初始对准方法
引用本文:裴福俊,居鹤华,崔平远. 基于Kalman/UKF组合训练神经网络的初始对准方法[J]. 系统仿真学报, 2008, 20(23): 6494-6497
作者姓名:裴福俊  居鹤华  崔平远
作者单位:北京工业大学电子信息与控制工程学院,哈尔滨工业大学深空探测基础研究中心
基金项目:国家863项目 , 博士科研启动基金项目  
摘    要:针对基于Unscented卡尔曼滤波(UKF)的神经网络训练学习方法存在的计算量大,实时性差的问题,提出了一种基于Kalman/UKF组合滤波原理的神经网络学习方法,该方法综合了Kalman滤波对线性系统和UKF对非线性系统的最优估计的优势,在保证神经网络权值估计精度的同时,有效降低了神经网络权值学习的计算量,提高了神经网络训练的实时性。最后将该利用方法训练的神经网络应用于惯性导航系统的非线性初始对准过程中,并进行了仿真研究。仿真结果表明利用提出的算法训练的神经网络与基于UKF训练的神经网络具有相同的对准精度和实时性,而提出的算法的有效降低了神经网络训练的计算量,提高了训练的运行效率,是解决惯性导航系统初始对准的一种有效和实用的方法。

关 键 词:Unscented 卡尔曼滤波  组合滤波  神经网络  初始对准

Initial Alignment Method Based on Kalman/UKF Integrated Training Neural Network
PEI Fu-jun,JU He-hua,CUI Ping-yuan. Initial Alignment Method Based on Kalman/UKF Integrated Training Neural Network[J]. Journal of System Simulation, 2008, 20(23): 6494-6497
Authors:PEI Fu-jun  JU He-hua  CUI Ping-yuan
Affiliation:PEI Fu-jun1,JU He-hua1,CUI Ping-yuan1,2
Abstract:The Unscented Kalman Filter (UKF) was studied as a state estimation method for the nonlinear system and was used to train multilayered neural network by augmenting the state with unknown connecting weights.Whereas the computer time of UKF depended on the dimension of the inertial navigation system model state vector.Any more number of states would take leave of real time.A learning algorithm for multiplayer neural network based on the Kalman/UKF integrated filter was studied.The theoretical procedure of the algorithm was described in detail.Then,it was used to the nonlinear initial alignment of inertial navigation system.Simulation results prove the availability of the neural network algorithm for nonlinear initial alignment of inertial navigation system.Not only can surely alignment accuracy and alignment time be obtained,which is similar to that of the UKF,but also the computation time is reduced considerably.Consequently,an available algorithm of neural network for the nonlinear initial alignment of inertial navigation system is discovered.
Keywords:Unscented Kalman Filter  integrated filter  neural network  initial alignment
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号