首页 | 本学科首页   官方微博 | 高级检索  
     

遗传支持向量机在电力变压器故障诊断中的应用
引用本文:肖燕彩,陈秀海,朱衡君. 遗传支持向量机在电力变压器故障诊断中的应用[J]. 上海交通大学学报, 2007, 41(11): 1878-1881,1886
作者姓名:肖燕彩  陈秀海  朱衡君
作者单位:北京交通大学,机械与电子控制工程学院,北京,100044;北京电力公司,北京,100031
摘    要:针对支持向量机中的参数通常靠交叉试验来确定的状况,提出了遗传支持向量机,即使用遗传算法来优化支持向量机中的参数,并将之进一步应用在基于溶解气体分析的变压器故障诊断中.以变压器油中5种主要特征气体作为支持向量机的输入,以7种变压器状态作为相应的输出,选用径向基核,使用遗传算法得到优化参数,充分发挥了支持向量机具有较高泛化能力的优势.实验表明,本文方法能够在较大范围内准确地找到相应的优化参数,并能有效地进行变压器的故障诊断.

关 键 词:电力变压器  遗传算法  支持向量机  故障诊断  溶解气体分析
文章编号:1006-2467(2007)11-1878-04
收稿时间:2006-11-10
修稿时间:2006-11-10

The Application of Genetic Support Vector Machine in Power Transformer Fault Diagnosis
XIAO Yan-cai,CHEN Xiu-hai,ZHU Heng-jun. The Application of Genetic Support Vector Machine in Power Transformer Fault Diagnosis[J]. Journal of Shanghai Jiaotong University, 2007, 41(11): 1878-1881,1886
Authors:XIAO Yan-cai  CHEN Xiu-hai  ZHU Heng-jun
Abstract:Considering the fact that parameters in support vector machine are usually decided by cross-(validation,) a genetic support vector machine was presented in which the parameters in SVM method are(optimized) by genetic algorithm.It was then applied to the insulation fault diagnosis of power transformer based on dissolved gas analysis.The concentration of the five characteristic gases dissolved in transformer oil are the inputs of support vector machine,the seven states of the transformer are the outputs.In the built model the radial based kernel is selected,the optimized parameters are used,and the superiority of SVM in processing finite samples is fully brought into play.The test shows the proposed method can find out the optimum accurately in a wide range and the value can be used to diagnose the transformer effectively.
Keywords:power transformer  genetic algorithm  support vector machine  fault diagnosis  dissolved gas analysis
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号