首页 | 本学科首页   官方微博 | 高级检索  
     

基因遗传算法在文本情感分类中的应用
引用本文:邓昌明,李晨,邓可君,张治坤,袁玲,姜宁,彭一明,邢承杰,卞晶,陈光,王梦淑,王雪琴. 基因遗传算法在文本情感分类中的应用[J]. 四川大学学报(自然科学版), 2019, 56(1): 45-49
作者姓名:邓昌明  李晨  邓可君  张治坤  袁玲  姜宁  彭一明  邢承杰  卞晶  陈光  王梦淑  王雪琴
作者单位:北京大学计算中心
摘    要:本文以微博文本为主要实验对象,提出适合卷积神经网络进行自我优化的编码方式,分别将每一层看做是一个染色体,将每一层中的参数看做是一个基因片段,采用混合双重非数值编码的方式编码每个CNN框架,设计出适合于CNN网络的选择、交叉和变异的算法,并且把基因遗传算法(GA)和与卷积神经网络相结合,提出了基于情感分析算法的遗传算法(GA-CNN).通过对传统算法与GA-CNN的实验与对比分析,良好地展示了自我优化性.

关 键 词:基因算法;情感分析;深度学习;自我进化
收稿时间:2018-10-17
修稿时间:2018-12-10

Application of genetic algorithm in text sentiment classification
Deng Changming,Li Chen,Deng Kejun,Zhang Zhikun,Yuan Ling,Jiang Ning,Peng Yiming,Xing Chengjie,Bian Jing,Chen Guang,Wang Mengshu and Wang Xueqin. Application of genetic algorithm in text sentiment classification[J]. Journal of Sichuan University (Natural Science Edition), 2019, 56(1): 45-49
Authors:Deng Changming  Li Chen  Deng Kejun  Zhang Zhikun  Yuan Ling  Jiang Ning  Peng Yiming  Xing Chengjie  Bian Jing  Chen Guang  Wang Mengshu  Wang Xueqin
Affiliation:Computer Center, Peking University,Computer Center, Peking University,Computer Center, Peking University,Computer Center, Peking University,Computer Center, Peking University,Computer Center, Peking University,Computer Center, Peking University,Computer Center, Peking University,Computer Center, Peking University,Computer Center, Peking University,Computer Center, Peking University,Computer Center, Peking University
Abstract:In this paper, we use Sina Weibo text as the main experimental dataset, and propose a coding method suitable for self optimization of convolutional neural networks. Our coding method encodes each CNN framework using a hybrid double non numeric encoding by treating each layer as a chromosome and the parameters in each layer as a gene segment respectively, and selection, crossover and mutation algorithms are devised for CNN networks. We also propose a genetic algorithm based on sentiment analysis algorithm (GA CNN) which combines genetic algorithm (GA) with convolutional neural network. The experiment and comparative analysis of GA CNN and traditional algorithms demonstrates the self optimization of our method.
Keywords:Genetic algorithm   Sentiment classification   Deep learning   Self optimization
本文献已被 CNKI 等数据库收录!
点击此处可从《四川大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号