首页 | 本学科首页   官方微博 | 高级检索  
     

车联网中基于深度强化学习的高可靠资源分配算法
引用本文:孙彦景,余政达,陈瑞瑞,李松. 车联网中基于深度强化学习的高可靠资源分配算法[J]. 重庆邮电大学学报(自然科学版), 2023, 35(4): 706-714
作者姓名:孙彦景  余政达  陈瑞瑞  李松
作者单位:中国矿业大学 信息与控制工程学院,江苏 徐州 221116
基金项目:江苏省自然科学基金项目(BK20200650);中国博士后科学基金项目(2019M660133);国家自然科学基金项目(62071472);中国矿业大学“工业物联网与应急协同”创新团队资助计划(2020ZY002);中国矿业大学基本科研业务费项目(2019QNB01,2020ZDPY0304)
摘    要:针对车联网环境下用户通信质量下降以及频谱资源紧张导致车辆与车辆(vehicle to vehicle,V2V)链路的关键信息传输难以满足高可靠性通信需求的问题,提出了一种基于深度强化学习(deep reinforcement learning,DRL)的高可靠资源分配算法。考虑干扰、传输时延和有效传输概率等约束条件,构建了车联网的可靠性保障优化问题;为了进一步保障V2V链路关键信息传输的可靠性,设计了压缩网络来压缩环境状态信息;根据可靠性保障优化问题设计了相应的奖励函数,并基于双深度Q网络(double deep Q-network,DDQN)设计了一种智能资源分配策略。仿真结果表明,所提算法能有效提高车联网的总速率,实现V2V链路关键信息的高可靠传输。

关 键 词:车联网  深度强化学习  可靠性  压缩网络  资源分配
收稿时间:2022-05-23
修稿时间:2023-04-25

Deep reinforcement learning based high reliability resource allocation algorithm for internet of vehicles
SUN Yanjing,YU Zhengd,CHEN Ruirui,LI Song. Deep reinforcement learning based high reliability resource allocation algorithm for internet of vehicles[J]. Journal of Chongqing University of Posts and Telecommunications, 2023, 35(4): 706-714
Authors:SUN Yanjing  YU Zhengd  CHEN Ruirui  LI Song
Affiliation:School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, P. R. China
Abstract:The increasingly complex communication environment of the Internet of Vehicles and the increase in the number of vehicles bring about the quality reduction of user communication and the shortage of spectrum resources, which makes it difficult for the transmission of key information in the vehicle-to-vehicle (V2V) link to meet the requirements of high reliability communication. For the above problem, a high reliability resource allocation algorithm based on deep reinforcement learning (DRL) is proposed. Considering the constraints of interference, transmission delay, and effective transmission probability, the reliability guarantee optimization problem of the Internet of vehicles is constructed. To further guarantee the reliability of V2V link key information transmission, a compression network is designed based on deep learning to compress environment state information. The corresponding reward function is designed according to the reliability guarantee optimization problem, and an intelligent resource allocation strategy is proposed based on the double deep Q-network (DDQN). Simulation results show that the proposed algorithm effectively improves the total rate of the Internet of Vehicles and realizes the high reliability transmission of key information in the V2V link.
Keywords:internet of vehicles  deep reinforcement learning  reliability  compression network  resource allocation
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号