首页 | 本学科首页   官方微博 | 高级检索  
     

一类一阶微分方程与Riccati方程的等价关系
引用本文:王明建,王五生,石东洋. 一类一阶微分方程与Riccati方程的等价关系[J]. 河南科学, 2014, 0(4): 479-481
作者姓名:王明建  王五生  石东洋
作者单位:[1]郑州师范学院数学与统计学院,郑州450044 [2]广西河池学院数学系,广西河池546300 [3]郑州大学理学院,郑州450052
基金项目:基金项目:河南省教育厅“十二五”规划项目[2011]-JKGHAD-0309
摘    要:证明了一类一阶常微分方程dy/dx=g′/gy+qΦ[(ay+f)G(g)]-f′/a+fg′/ag+αq(其中a,b和α都是实常数,f=f(x),g=g(x)和u=u(x)都是x的连续可微函数,Φ(u)是u的连续函数,G(g)是g的连续函数,且G(g)≠0))与Riccati方程在某些条件下的等价性,同时给出了与文献[1]不同的解法.

关 键 词:常微分方程  Riccati方程  等价性

Equivalent of a Class of First Order Differential Equation and Riccati Equation
Wang Mingjian,Wang Wusheng,Shi Dongyang. Equivalent of a Class of First Order Differential Equation and Riccati Equation[J]. Henan Science, 2014, 0(4): 479-481
Authors:Wang Mingjian  Wang Wusheng  Shi Dongyang
Affiliation:1. College of Mathematics and Statics, Zhengzhou Normal University, Zhengzhou 450044, China; 2. Department of Mathematics, Hechi University, Hechi 546300, Guangxi China; 3. Department of Mathematics and Statics, Zhengzhou University, Zhengzhou 450052, China)
Abstract:Equivalent of a class of first order differential equation dy/dx =g′g y+qΦ[(a y+f)G(g)]-f′/a +fg′/ag +αq (there a,b and α are real constant, f,g and u are continuous and differentiable function,Φ(u) and G(g) are continuous function,and G(g)≠0) and Riccati equation is given,and the some error in articles[1] are correcting.
Keywords:order differential equation  Riccati equation  equivalent
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号