首页 | 本学科首页   官方微博 | 高级检索  
     

基于二叉级联结构的并行极速学习机算法
引用本文:王磊,刘艳,夏娟. 基于二叉级联结构的并行极速学习机算法[J]. 吉林大学学报(信息科学版), 2012, 30(4): 418-425. DOI: 10.3969/j.issn.1671-5896.2012.04.014
作者姓名:王磊  刘艳  夏娟
作者单位:1.西南财经大学经济信息工程学院;金融智能与金融工程重点实验室,成都610074;2.西南财经大学经济信息工程学院,成都,610074;3.西南财经大学金融智能与金融工程重点实验室,成都,610074
基金项目:中央高校基本科研业务费专项基金资助项目,教育部人文社会科学研究基金资助项目
摘    要:为解决因庞大的矩阵存储和计算,ELM(Extreme Learning Machines)难以应用到大规模、高维数据集的问题,提出一种基于“分而治之”策略的并行极速学习机算法.该算法利用二叉级联结构,将大规模数据集分派到多个计算节点上,并行地更新单隐层前馈网络的输出权值,且能有限步地单调收敛到最小二乘解.实验结果表明,该算法不仅泛化性能优异,并且具有非常高的加速比和并行效率.

关 键 词:单隐层前馈神经网络  极速学习机  并行极速学习机  二叉级联结构  

Parallel Extreme Learning Machines Based on Binary Cascade Architecture
WANG Lei , LIU Yan , XIA Juan. Parallel Extreme Learning Machines Based on Binary Cascade Architecture[J]. Journal of Jilin University:Information Sci Ed, 2012, 30(4): 418-425. DOI: 10.3969/j.issn.1671-5896.2012.04.014
Authors:WANG Lei    LIU Yan    XIA Juan
Affiliation:a.School of Economics Information Engineering;b.The Key Lab of Financial Intelligence and Financial Engineering,Southwestern University of Finance &Economics,Chengdu 610074,China
Abstract:ELM(Extreme Learning Machines) always works inefficiently on large-scale and high-dimension datasets for huge memory and computation costs.We prepose a novel parallel algorithm for training ELM quickly based on divide and conquer strategy.It dispatches large-scale datasets to a cluster of computing nodes by utilizing special binary cascade architecture,and then updates weights of SLFN(Single Hidden Layer Feed-forward Neural Network) in parallel.Theoretical analysis proves that the new algorithm converges to the best least-square solution monotonously with finite steps.Preliminary experimental results show that the new algorithm has good generalization ability,excellent speedup ratio and parallel efficiency.
Keywords:single hidden layer feed-forward neural network  extreme learning machines  parallel extreme learning machines  binary cascade architecture
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉林大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号