首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊控制修正Elman神经网络的电力负荷短期动态预测
摘    要:为了更好地反映电力负荷系统非线性、动态性、时变性的特点,对电力负荷进行更加智能、准确的预测,将Elman神经网络与模糊控制相结合,提出了一种基于模糊控制修正Elman神经网络的电力负荷短期动态预测模型。首先利用Elman神经网络对电力负荷进行预测并计算预测残差,然后利用模糊控制对残差进行预测控制并对Elman神经网络预测结果进行智能修正,最后结合Elman神经网络与模糊控制修正结果得到最终的电力负荷预测结果。以辽宁省某市2015年6月份部分电力负荷历史数据为样本,结合天气温度情况,利用本文提出的模型进行了实际电力负荷短期预测,最终结果误差较小且比较稳定,优于单一Elman神经网络和该市目前电力系统预测结果,验证了本文提出模型的有效性及可靠性,为短期电力负荷预测提供了一种较为可靠的途径。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号