首页 | 本学科首页   官方微博 | 高级检索  
     

粒子群算法优化BP神经网络
引用本文:谭乐平,文军. 粒子群算法优化BP神经网络[J]. 湖北民族学院学报(自然科学版), 2012, 0(3): 254-255,270
作者姓名:谭乐平  文军
作者单位:湖北民族学院 理学院
基金项目:国家自然科学基金项目(60973083)
摘    要:现实生活中绝大数系统都是非线性的,BP神经网络通过训练能否达到局部最优值、能否收敛以及训练的时间长短与初始值和阈值的选取关系密切.为此采用了具有动态惯性权重的粒子群算法对BP神经网络初始值进行优化.实验表明具有动态惯性权重的粒子群算法优化BP神经网络预测误差很小,能够跳出局部极小值,得到更优的结果.

关 键 词:粒子群算法  BP神经网络  个体极值  群体极值

Optimization of the BP Neural Netwook with Particle Swarm Algorithm
TAN Le-ping,WEN Jun. Optimization of the BP Neural Netwook with Particle Swarm Algorithm[J]. Journal of Hubei Institute for Nationalities(Natural Sciences), 2012, 0(3): 254-255,270
Authors:TAN Le-ping  WEN Jun
Affiliation:(School of Science,Hubei University for Nationalities,Enshi 445000,China)
Abstract:Most systemms are nonlinear in real life.Whether BP neural network could meet the local optimal value through training,whether it is comvergent and how long the training lasts are closely related to the initial value and the threshold value selected.This paper use a particle swarm algorithm with dynamic inertia weight network to optimize the initial value of the BP neural network.The experiment shows that the prediction error is very small when the particle swarm algorithm is used to optimize the BP neural network. Such an algorithm can jump out of local minimum value and get better results.
Keywords:particle swarm algorithm  BP neural network  individual extremum  group extremum
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号