首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
一般多步方法线性稳定性的适用范围
作者姓名:
曹学年 李寿佛
作者单位:
湘潭大学数学系
摘 要:
已往文献已经证明:以线性多步法或Runge—Kutta法按定步长h求解任给常系数线性微分方程组初值问题时(这里常量矩阵是t的连续函数),只要系数矩阵A的请特征值λ1,λ2,…λm与步长h的乘积都落在方法的绝对稳定区域内,则计算过程是数值稳定的.本文进一步证明这一结果对于远为广泛的一般多步方法同样成立.
关 键 词:
数值分析
一般多步方法
数值稳定性
本文献已被
CNKI
维普
等数据库收录!
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号