首页 | 本学科首页   官方微博 | 高级检索  
     

带量测缺失的线性离散系统的滤波算法研究
引用本文:徐迎菊,王娜. 带量测缺失的线性离散系统的滤波算法研究[J]. 科学技术与工程, 2021, 21(26): 11226-11231
作者姓名:徐迎菊  王娜
作者单位:青岛大学自动化学院,青岛266071;青岛大学自动化学院,青岛266071;青岛大学山东省工业控制技术重点实验室,青岛266071
基金项目:国家自然科学基金(61703221);山东省自然科学基金(ZR2016FP10)。
摘    要:研究了含有量测缺失的线性离散系统未知干扰和状态估计问题。首先将量测丢失建模为带二进制变量的伯努利过程,来模拟量测丢失的随机情形;其次考虑测量方程中未知干扰的系数矩阵不满秩和量测信息缺失的情况,设计一种抗干扰滤波器,该滤波器满足了未知干扰和系统状态估计的最小方差无偏性;最后通过数值仿真验证了在发生量测信息缺失的不同概率下,仍能实现对系统状态和未知干扰的无偏估计,表明了所提算法的有效性。

关 键 词:量测缺失  状态和未知干扰估计  无偏性  最小方差
收稿时间:2021-03-22
修稿时间:2021-07-29

Research on filtering algorithm for linear discrete systems with missing measurements
Xu Yingju,Wang Na. Research on filtering algorithm for linear discrete systems with missing measurements[J]. Science Technology and Engineering, 2021, 21(26): 11226-11231
Authors:Xu Yingju  Wang Na
Affiliation:College of Automation,Qingdao University
Abstract:This paper is concerned with the problem of state and unknown disturbance estimation for linear discrete systems with missing measurements. Firstly, the measurement loss is modeled as a Bernoulli process with binary variables to simulate the random case of measurement loss. Considering that the coefficient matrix of unknown disturbance in the measurement equation is not of full rank and the measurement information is missing, an anti-disturbance filter is designed, which satisfies the minimum variance unbiasedness of unknown disturbance and system state estimation. Under different probability of missing measurement information, unbiased estimation of system state and unknown disturbance can still be realized, a numerical simulation is presented to demonstrate the effectiveness of the proposed algorithm.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号