首页 | 本学科首页   官方微博 | 高级检索  
     

一种无指导命名实体关系抽取研究
引用本文:赵君喆,何婷婷,李晶. 一种无指导命名实体关系抽取研究[J]. 咸宁学院学报, 2009, 29(6): 38-40,102
作者姓名:赵君喆  何婷婷  李晶
作者单位:1. 咸宁学院,计算机科学与技术学院,湖北,咸宁,437100
2. 华中师范大学,计算机科学系,湖北,武汉,430079
摘    要:提出了一种网络数据挖掘的方法从大规模文集中抽取命名实体之间的关系.其核心思想是,将文集中的命名实体对以及它们的上下文表示成网络结构并从该网络结构中发现网络社区,则每个社区表示一种关系,而处于相同社区中的命名实体对具有相同的关系;最后我们用适当的词语来标记这些关系.我们使用《人民日报语料库》进行实验,其结果表明我们不但可以得到较高的准确率,而且可以自动的标注命名实体的关系.

关 键 词:命名实体对  社区  介数

Research of an Unsupervised Method of the Relations Detecting among Named Entities
ZHAO Jun-zhe,HE Ting-ting,LI Jing. Research of an Unsupervised Method of the Relations Detecting among Named Entities[J]. Journal of Xianning College, 2009, 29(6): 38-40,102
Authors:ZHAO Jun-zhe  HE Ting-ting  LI Jing
Affiliation:1. College of Computer Science and Technology, Xianning University, Xianning437100, China ; 2. Department of Computer Science, CCNU, Wuhan430079, China)
Abstract:This paper proposes a networked data mining method for relations discovery from large corpus. The key idea is representing the named entities pairs and their contexts as the network structure and detecting the communities from the network. Then each community relates to a relation the named entities pairs in the same community have the same relation. Finally, we labeled the relations. Our experiment using the corpus of People's Daily reveals not only that the relations among named entities could be detected with high precision, but also that appropriate labels could be automatically provided for the relations.
Keywords:Named entities pair  Community  Betweenness
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号