首页 | 本学科首页   官方微博 | 高级检索  
     

粒子群优化算法在TDOA定位中的应用
引用本文:李俊峰,高洪元,庞伟正,佟志勇. 粒子群优化算法在TDOA定位中的应用[J]. 应用科技, 2005, 32(10): 7-9
作者姓名:李俊峰  高洪元  庞伟正  佟志勇
作者单位:哈尔滨工程大学,信息与通信工程学院,黑龙江,哈尔滨,150001
摘    要:提出了接收端在空间随机分布时,利用粒子群优化算法解决TDOA定位估计中遇到的非线性最优化问题.针对TDOA定位方式,该算法首先初始化一个随机粒子群,然后根据适应度值更新粒子速度和位置,通过迭代搜索最佳坐标.仿真结果表明,在参数设定合理的情况下,该算法性能稳定,能找到逼近全局最优点的解,相对于其他算法精度更高.

关 键 词:到达时间差  粒子群优化算法  无线定位
文章编号:1009-671X(2005)10-0007-03
收稿时间:2004-09-07
修稿时间:2004-09-07

Application of particle swarm optimization to TDOA-based location
LI Jun-feng,GAO Hong-yuan,PANG Wei-zheng,TONG Zhi-yong. Application of particle swarm optimization to TDOA-based location[J]. Applied Science and Technology, 2005, 32(10): 7-9
Authors:LI Jun-feng  GAO Hong-yuan  PANG Wei-zheng  TONG Zhi-yong
Affiliation:LI Jun-feng, GAO Hong-yuan, PANG Wei-zheng, TONG Zhi-yong (School of Information and Communication Engineering, Harbin Engineering University, Harbin 150001,
Abstract:The particle swarm optimization for the nonlinear optimization in TDOA-based location is proposed in this paper.By initializing a random particle swarm,updating the velocity and position of particles in accordance with the fitness of particles,the algorithm searches the optimal coordinates through iterative searching.The experimental results show that if the parameters are assumed reasonably,the algorithm is stable and can find the global optimal solution.It has a higher accuracy than other algorithms.
Keywords:TDOA  particle swarm optimization  wireless location
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号