首页 | 本学科首页   官方微博 | 高级检索  
     

求解多峰值问题的改进混合遗传算法
引用本文:范小勤,汪小红. 求解多峰值问题的改进混合遗传算法[J]. 甘肃联合大学学报(自然科学版), 2011, 25(4): 14-17,21
作者姓名:范小勤  汪小红
作者单位:1. 广州番禺职业技术学院基础课部,广东广州,511483
2. 广州番禺职业技术学院机械与电子系,广东广州,511483
摘    要:由于遗传算法解决问题时容易陷入局部极值点,根据遗传算法全局搜索能力强和模拟退火算法局部搜索能力优的特点,将它们混合使用,同时改进初始群体产生方法,使随机产生的初始群体之间有较明显的差别,能均匀分布在解空间,并采取与进化代数相关的多精英保留策略及改进的自适应选择与变异操作.模拟退火算法的结束条件改进为当连续五代个体与前一代适应值无变化或当前温度小于结束温度.仿真实验表明新算法在求解多峰值问题时改善了遗传算法的局部搜索能力,有效地解决了遗传算法的早熟现象,显著提高了遗传算法求得全局解的概率.

关 键 词:多峰值优化  改进遗传算法  改进模拟退火算法  混合算法

Improved Hybrid Genetic Algorithm in Multimodal Problem Solving
FAN Xiao-qin,Wang Xiao-hong. Improved Hybrid Genetic Algorithm in Multimodal Problem Solving[J]. Journal of Gansu Lianhe University :Natural Sciences, 2011, 25(4): 14-17,21
Authors:FAN Xiao-qin  Wang Xiao-hong
Affiliation:1.Basic Courses Section,Guangzhou Panyu Polytechnic,Guangzhou 511483,China;2.Department of Mechanical and Eletronic,Guangzhou Panyu Polytechnic,Guangzhou 511483,China)
Abstract:As it is easy for genetic algorithm to fall into local extreme point,based on genetic algorithm to have strong global searching power and simulated annealing algorithm to have powerful local searching,if hybriding genetic algorithem and simulated annealing algorithm,it will help improve the method for getting initial groups and make clear differences between the randomly generated initial groups,it can be evenly distributed in the solution space.Simulated experiments show that in solving multimodal mroblems,this new hybrid genetic algorithm effectively improves the local searching power of hybrid genetic algorithms and prevents its premature phenomenon.It greatly increases the probability of obtaining the global solution as well.
Keywords:optimization of multimodal problem  improvement of genetic algorithm  improvement of simulated annealing algorithm  hybrid algorithm
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号