首页 | 本学科首页   官方微博 | 高级检索  
     

一种量子神经网络说话人识别方法
引用本文:王金明,王耿,郑国宏,孙健. 一种量子神经网络说话人识别方法[J]. 解放军理工大学学报(自然科学版), 2012, 0(3): 242-246. DOI: -
作者姓名:王金明  王耿  郑国宏  孙健
作者单位:解放军理工大学 通信工程学院,江苏 南京 210007
摘    要:针对说话人语音特征空间边界存在模糊性的特点,构建了一种量子神经网络识别分类器,用于说话人识别,以改善存在交叉数据的语音特征参数的分类效果。提出了一种基于人工免疫算法的量子间隔训练方法,以改善传统量子神经网络训练算法的不足。以TIMIT语音库为测试语音,与传统BP网络和基于常规梯度下降量子间隔训练算法的量子神经网络做对比实验。实验证明,算法能有效提高说话人识别系统的识别率,同时与高斯混合模型相比,具有更好的抗噪声性能。

关 键 词:量子神经网络  说话人识别  人工免疫算法  多层传递函数  高斯混合模型
收稿时间:2011-01-05
修稿时间:2011-01-05.

Speaker recognition method based on quantum neural network
WANG Jin-ming,WANG Geng,ZHENG Guo-hong and SUN Jian. Speaker recognition method based on quantum neural network[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2012, 0(3): 242-246. DOI: -
Authors:WANG Jin-ming  WANG Geng  ZHENG Guo-hong  SUN Jian
Affiliation:Institute of Communications Engineering, PLA Univ. of Sci. & Tech., Nanjing 210007, China
Abstract:To tackle the problem that fuzziness exists in the speech feature space boundary, a speaker recognition model based on quantum neural network (QNN) was constructed to improve the classification performance of speech feature parameters. One method based on the artificial immune algorithm was proposed to the training quantum neural network. The experimental results show that the performance of the proposed method is better than that of the traditional BP neural network and gradient descent training QNN, and also more robust to noise than GMM.
Keywords:QNN (quantum neural network)  speaker recognition  artificial immune algorithm  multilevel transfer function  GMM(Gaussian mixture models)
点击此处可从《解放军理工大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《解放军理工大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号