首页 | 本学科首页   官方微博 | 高级检索  
     

不定方程组x~2-10y~2=1,y~2-Dz~2=4
引用本文:冉延平. 不定方程组x~2-10y~2=1,y~2-Dz~2=4[J]. 延安大学学报(自然科学版), 2012, 31(1): 8-10
作者姓名:冉延平
作者单位:天水师范学院数学系,甘肃天水,741001
基金项目:甘肃省校内基金(TSB0713)
摘    要:设D是无平方因子的偶数且D=2Πki=1piΠlj=1qj,pi=3,11,13,17,19,23,29,31,37(mod40),qj=3,7,11,19,23,31(mod40),或qj=1,5,13,17,19,29,37(mod40),l≤3,其中诸pi,qj是互异奇素数,本文证明了不定方程组x2-10y2=1,y2-Dz2=4仅有非凡解D=2,(x,y,z)=(19,6,4)。

关 键 词:不定方程组  pell方程  非平凡解  素因数

Integer Solution of the Simultaneous Diophantine Equations x~2-10y~2=1 and y~2-Dz~2=4
RAN Yan-ping. Integer Solution of the Simultaneous Diophantine Equations x~2-10y~2=1 and y~2-Dz~2=4[J]. Journal of Yan'an University(Natural Science Edition), 2012, 31(1): 8-10
Authors:RAN Yan-ping
Affiliation:RAN Yan-ping(Department of Mathematics,Tianshui Normal University,Tianshui 741001,China)
Abstract:The following conclusion is proved:If D is an even square-free integer,D=2 Πk i=1 pi Πl j=1 qj,pi≡3,11,13,17,19,23,29,31,37(mod40),qj≡3,7,11,19,23,31(mod40),或qj≡1,5,13,17,19,29,37(mod40),l≤3,where pi,qj are different odd prime,then the equations in title only have a non-trivial solution D=2,(x,y,z)=(19,6,4).
Keywords:simultaneous diophantine equations  pell equation  non-trivial solution  prime factors
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号