首页 | 本学科首页   官方微博 | 高级检索  
     

关于随机变量的独立性
作者姓名:王恒荣
摘    要:设X_1、X_2是定义在概率空间(Ω,F,P)上的、可测度量空间(s,S)中的两个随机元。对于A∈S,A的边界(?)A,若P(X∈(?)A)=0,称A为X的连续集。易知X的一切连续集构成一个σ代数。定义对于随机元(X_1,X_2),(?)X_1的连续集A_1与(?)X_2的连续集A_2,若P(X_1∈A_1,X_2∈A_2)=P(X_1∈A_1),P(X_2∈A_2),称(X_1,X_2)对于连续集独立。对于连续集独立的随机元,不一定概率独立,例

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号