首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进遗传算法的AGC机组优化组合研究
引用本文:张俊芳,秦红霞,贾晋,吴军基. 基于改进遗传算法的AGC机组优化组合研究[J]. 南京理工大学学报(自然科学版), 2009, 33(6)
作者姓名:张俊芳  秦红霞  贾晋  吴军基
作者单位:1. 南京理工大学,动力工程学院,江苏,南京,210094
2. 北京四方继保自动化股份有限公司,北京,100085
3. 安徽省巢湖供电公司,调度所,安徽,巢湖,238000
摘    要:为降低发电成本,该文对自动发电控制(AGC)机组优化组合问题进行了研究.基于改进遗传算法,建立了包含AGC的机组优化组合模型;针对遗传算法存在的不足,结合包含AGC机组优化组合模型的特殊性,提出了可变长二进制编码;设计了专门的遗传操作,并采用等微增法对其中的连续变量进行了处理.将所研究的算法和模型应用于包含16台机组24时段的机组优化系统中,仿真结果表明该改进遗传算法的计算结果优于实数编码方法结果11.33%,并在搜索区间及收敛速度等方面都具有较好的性能,适用于大、中型发电系统.

关 键 词:遗传算法  等微增法  机组优化组合  自动发电控制

Optimization of Generator Unit Commitment Including AGC Based on Improved Genetic Algorithm
ZHANG Jun-fang,QIN Hong-xia,JIA Jin,WU Jun-ji. Optimization of Generator Unit Commitment Including AGC Based on Improved Genetic Algorithm[J]. Journal of Nanjing University of Science and Technology(Nature Science), 2009, 33(6)
Authors:ZHANG Jun-fang  QIN Hong-xia  JIA Jin  WU Jun-ji
Abstract:To reduce the generating cost, a method for generator unit commitment including automatic generation control(AGC) is studied here. Based on the improved genetic algorithm, a new model of generator unit commitment including AGC is established. For the existing deficiencies of the standard genetic algorithm and particularity of the model on generator unit commitment including AGC, a variable-length binary encoding is proposed and a special genetic operation is designed, in which the principle of equal incremental rate is used for the continuous variables. The simulations of the 16-machine and 24-hour system show that the results from the improved genetic algorithms and mode optimize 11.33% compared with the results from real encoding. A preferable performance is achieved in search range and convergence speed. The method is suitable for large and medium generating systems.
Keywords:genetic algorithm  principle of equal incremental rate  generator unit commitment  automatic generation control
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号