摘 要: | 针对传统机载雷达运动目标检测方法所需训练距离单元较多的问题,将运动目标检测问题转化为多分类问题.首先,基于少量训练距离单元数据构建分类所需的训练数据集;然后,基于卷积神经网络DenseNet构建多类分类器;最后,利用训练后的分类器提取雷达空时回波数据特征,进行目标检测和参数估计.仿真结果表明:基于DenseNet的机载雷达动目标检测方法能够有效检测目标,估计目标的距离、多普勒频率等参数.相比传统空时自适应处理方法,该方法能够显著减少所需训练距离单元数量;相比现有基于分类的目标检测方法,该方法能够有效提高目标检测和参数估计的准确度.
|