首页 | 本学科首页   官方微博 | 高级检索  
     

基于背景差分和粒子滤波的运动目标跟踪算法
引用本文:王江涛. 基于背景差分和粒子滤波的运动目标跟踪算法[J]. 吉林大学学报(理学版), 2015, 53(5): 999-1005
作者姓名:王江涛
作者单位:重庆邮电大学 软件工程学院, 重庆 400065
摘    要:针对粒子滤波算法在复杂环境下粒子数量显著增加导致跟踪实时性下降的问题,提出一种将背景差分引入到粒子滤波算法中的新算法.利用背景差分对图像处理后得到检测结果,将分布在已被检测为前景像素点上的粒子定义为重要性粒子,增大了其权值.实验结果表明,该算法能使用较少的粒子实现较好的跟踪,提高了跟踪的实时性.

关 键 词:人工智能  背景差分  粒子滤波  运动目标跟踪  
收稿时间:2015-01-04

A Moving Target Tracking Algorithm Based on Background Subtraction and Particle Filter
WANG Jiangtao. A Moving Target Tracking Algorithm Based on Background Subtraction and Particle Filter[J]. Journal of Jilin University: Sci Ed, 2015, 53(5): 999-1005
Authors:WANG Jiangtao
Affiliation:College of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Abstract:To solve the problem of low real time tracking caused by the increased particles in a complex environment based on the algorithm of particle filter, the author introduced the background subtraction into the particle filter to propose a new algorithm. After getting the detection result from theimage background subtraction, the particle that has been detected to be on foreground pixel is defined as “the important particle”, whose weight grows. Experiments show that the proposed algorithm can achieve better tracking based on fewer particles, and it also improves the real time tracking.
Keywords:artificial intelligence  background subtraction  particle filter  moving target tracking  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号