首页 | 本学科首页   官方微博 | 高级检索  
     

基于LBP与卷积神经网络的人脸识别
作者单位:;1.天津大学应用数学中心
摘    要:卷积神经网络在人脸识别上有较好的效果,但是其提取的人脸特征忽略了人脸的局部结构特征.为了提取更加全面的人脸特征,提出一种基于局部二值模式(local binary pattern,LBP)与卷积神经网络相结合的新方法.首先,提取人脸图片的LBP特征图像,然后把LBP图像与原RGB图像结合作为网络输入数据,并且使用随机梯度下降法训练网络参数,最后用训练得到的网络模型对人脸图片进行识别.通过在LFW(labeled face in the wild)人脸识别数据库上的实验表明,在卷积神经网络中加入LBP图像信息可以提高人脸识别的准确率.另外,当增加训练数据时,提出的方法得到的识别率会进一步提高,更说明提出方法的有效性.

关 键 词:局部二值模式  卷积神经网络  人脸识别  深度学习  特征提取

Face recognition based on LBP and convolutional neural network
Abstract:
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号