首页 | 本学科首页   官方微博 | 高级检索  
     

软件定义网络中基于贝叶斯ARTMAP的DDoS攻击检测模型
引用本文:刘振鹏,张庆文,李泽园,刘嘉航,董姝慧,赵永刚. 软件定义网络中基于贝叶斯ARTMAP的DDoS攻击检测模型[J]. 河北大学学报(自然科学版), 2021, 41(6): 728. DOI: 10.3969/j.issn.1000-1565.2021.06.013
作者姓名:刘振鹏  张庆文  李泽园  刘嘉航  董姝慧  赵永刚
作者单位:河北大学电子信息工程学院,河北保定071002;河北工程大学管理工程与商学院,河北邯郸056038
基金项目:河北省自然科学基金资助项目(F2019201427);教育部“云数融合科教创新”基金资助项目(2017A20004)
摘    要:为解决SDN(software defined network,软件定义网络)架构下DDoS(distributed denial of service,分布式拒绝服务)攻击检测问题,提出基于贝叶斯ARTMAP的DDoS攻击检测模型. 流量统计模块主要收集捕获到的流表信息,特征提取模块提取流表中的关键信息并获取关键特征,分类检测模块通过贝叶斯ARTMAP提取分类规则,并通过粒子群算法对参数进行优化,对新的数据集进行分类检测.仿真实验证明了模型所提取的5元特征的有效性,并且该模型与3种传统的DDoS攻击检测模型相比检测成功率提高了0.96%~3.71%,误警率降低了0.67%~2.92%.

关 键 词:软件定义网络  DDoS攻击  贝叶斯ARTMAP  特征提取  检测模型

DDoS attack detection model based on Bayesian ARTMAP in software-defined networks
LIU Zhenpeng,ZHANG Qingwen,LI Zeyuan,LIU Jiahang,DONG Shuhui,ZHAO Yonggang. DDoS attack detection model based on Bayesian ARTMAP in software-defined networks[J]. Journal of Hebei University (Natural Science Edition), 2021, 41(6): 728. DOI: 10.3969/j.issn.1000-1565.2021.06.013
Authors:LIU Zhenpeng  ZHANG Qingwen  LI Zeyuan  LIU Jiahang  DONG Shuhui  ZHAO Yonggang
Affiliation:1.School of Electronic Information Engineering, Hebei University, Baoding 071002, China; 2.School of Management Engineering and Business, Hebei University of Engineering, Handan 056038, China
Abstract:In order to solve the problem of distributed denial of service(DDoS)attack detection under software defined network(SDN)architecture, a DDoS attack detection model based on Bayesian ARTMAP is proposed: the traffic statistics module mainly collects the captured flow table information, and then sends it to the feature extraction module. The feature extraction module extracts the key information in the flow table and provides the key features according to the set method, and these features are finally sent to the classification detection module. Classification detection module extracts classification rules by Bayesian ARTMAP, and optimizes parameters by particle swarm optimization to classify new data sets. Experiments show that the 5 yuan features extracted by the model are effective, and the detection success rate of the model is increased by 0.96%-3.71%, and the false alarm rate is reduced by 0.67%-2.92% compared with the three DDoS attack detection models based on C4.5 decision tree, feature pattern graph model and K-means algorithm model.
Keywords:software-defined network  DDoS attack  Bayesian ARTMAP  feature extraction  detection model  
本文献已被 万方数据 等数据库收录!
点击此处可从《河北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《河北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号