首页 | 本学科首页   官方微博 | 高级检索  
     

基于L0矩阵范数正则化的自然图像去反光算法
引用本文:丁 凤,夏又生. 基于L0矩阵范数正则化的自然图像去反光算法[J]. 福州大学学报(自然科学版), 2022, 50(6): 729-736
作者姓名:丁 凤  夏又生
作者单位:福州大学数学与统计学院福建福州,南京信息工程大学人工智能学院
基金项目:国家自然科学基金资助项目
摘    要:去除图像的反光是计算机视觉和计算机图形学的一个基础研究问题。虽然各种方法已经提出,但由于存在丰富的纹理、复杂的背景、遮挡和颜色照明等,去反光的效果并不佳,有待进一步完善。本文针对自然图像的两个观察结果:(1)高光通常是小尺寸和稀疏分布的;(2)剩余的漫反射图像可以用少量基色与稀疏和低秩加权矩阵的线性组合表示,提出一种基于L0范数正则化图像去反光算法。通过L0范数正则化保证编码系数的稀疏性以及核范数保证编码系数的低秩性来恢复那些高光区域的漫反射分量。此外,根据加色混合理论和光照定义,编码系数和高光也分别受到非负性影响。通过对比相关的图像反光去除算法,实验说明了所提出的算法具有较好的优势。

关 键 词:图像高光去除  L0范数正则化  稀疏  矩阵优化算法
收稿时间:2022-01-21
修稿时间:2022-03-04

Highlight removal algorithm for real-world images based on L0 matrix norm regularization
DING Feng,XIA Yousheng. Highlight removal algorithm for real-world images based on L0 matrix norm regularization[J]. Journal of Fuzhou University(Natural Science Edition), 2022, 50(6): 729-736
Authors:DING Feng  XIA Yousheng
Affiliation:College of Mathematics and Statistics,Fuzhou University,Fuzhou,Fujian,College of Artificial Intelligence,Nanjing University of Information Science and Technology
Abstract:Specular highlight removal is a basic research problem in computer vision and computer graphics. Although various methods have been proposed, they generally do not work well for natural images due to rich textures, complex materials, hard shadows, occlusion, and color lighting,so it needs to be further improved. In this paper, a new method of highlight removal for natural images is proposed. Our method is based on two observations of natural images: (1) highlights are usually small in size and sparsely distributed; (2) The remaining diffuse image can be represented by a linear combination of a few primary colors and a sparse and low-rank weighted matrix. Based on these two observations, we design an optimization framework for estimating both diffuse and specular images from a single image. Specifically, we restore the diffuse components of those high-light regions by using L0 norm guarantee sparsity of coding coefficients and nuclear norm to guarantee low rank of coding coefficients. In addition, according to the additive color mixing theory and the illumination definition, the coding coefficient and the specular light are also affected by non-negative effects respectively. The effectiveness and superiority of the proposed method are verified by a lot of experiments on various images.
Keywords:Specular highlight removal   L0 norm regularization   Sparse  SMatrix optimization algorithm
点击此处可从《福州大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《福州大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号