首页 | 本学科首页   官方微博 | 高级检索  
     

功能梯度悬臂梁弯曲问题的解析解
引用本文:仲政,于涛. 功能梯度悬臂梁弯曲问题的解析解[J]. 同济大学学报(自然科学版), 2006, 34(4): 443-447
作者姓名:仲政  于涛
作者单位:同济大学,航空航天与力学学院,上海,200092
基金项目:国家自然科学基金;国家杰出青年科学基金
摘    要:将功能梯度悬臂梁作为平面应力问题处理.根据正交各向异性弹性体的基本方程,引入应力函数,假设所有材料常数沿厚度方向按同一函数规律变化,采用弹性力学半逆解法,求得功能梯度悬臂梁在端部集中力和力矩作用下的解析解.所得到的解,对任意梯度函数均成立,且退化到各向同性均匀弹性情况下的结果,与已有的理论解相一致.对弹性模量分别按指数函数和幂函数梯度变化的算例进行了分析,结果显示功能梯度梁的轴向位移仍近似直线变化.

关 键 词:功能梯度材料  悬臂梁  半逆解法
文章编号:0253-374X(2006)04-0443-05
收稿时间:2004-09-20
修稿时间:2004-09-20

Analytical Bending Solution of Functionally Graded Cantilever-Beam
ZHONG Zheng,YU Tao. Analytical Bending Solution of Functionally Graded Cantilever-Beam[J]. Journal of Tongji University(Natural Science), 2006, 34(4): 443-447
Authors:ZHONG Zheng  YU Tao
Affiliation:School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092,China
Abstract:Based on the semi-inverse method, an analytical solution is obtained for a functionally graded cantilever-beam that is clamped at one end and subjected to a concentrated force and a couple at another end. The problem is treated as a plane stress case of an orthotropic elastic body. The mechanical properties of the material have been assumed to have the same dependence on the height-coordinate. This solution is valid for arbitrary gradient functions and it can play as a benchmark result for assessing oth- er approximate methodologies or as a basis for establishing simplified functionally graded beam theories. Degenerate results for isotropic homogeneous elastic case are coincided well with existing analytical solutions. Some numerical examples are also given by assuming an exponential gradient function.
Keywords:functionally graded material   cantilever-beam   semi-inverse method
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号