首页 | 本学科首页   官方微博 | 高级检索  
     

GM-ARIMA模型在大坝安全监测中的应用
引用本文:冯龙龙,李星,李晓晨,李岩. GM-ARIMA模型在大坝安全监测中的应用[J]. 三峡大学学报(自然科学版), 2013, 0(5): 6-9
作者姓名:冯龙龙  李星  李晓晨  李岩
作者单位:[1]河海大学水文水资源与水利工程科学国家重点实验室,南京210098 [2]河海大学水资源高效利用与工程安全国家工程研究中心,南京210098 [3]河海大学水利水电学院,南京210098
基金项目:国家自然科学基金资助项目(51139001);新世纪优秀人才支持计划资助(NCET-11-0628);高等学校博士学科点专项科研基金(20120094110005);中央高校基本科研业务费项目(2012807214)
摘    要:针对大坝安全监测的小样本数据既有一定趋势性又有一定波动性的特点,把灰色模型和时间序列模型结合起来运用在大坝安全监测中.首先利用灰色模型进行拟合和预测,然后对灰色残差序列建立ARIMA模型,对残差进行预测,最后将两者结合起来即可得到预测值.本文以小湾拱坝坝顶某测点的径向位移为例,建立GM-ARIMA进行拟合和预测,并与实测值比较.计算结果表明,与GM模型相比,GM-ARIMA模型的精度高,预测值更接近于实测值.

关 键 词:GM-ARIMA模型  大坝安全监测  拟合  预测

Application of GM-ARIMA Model to Dam Safety Monitoring
Feng Longlong Li Xing Li Xiaoche Li Yan. Application of GM-ARIMA Model to Dam Safety Monitoring[J]. Journal of China Three Gorges University(Natural Sciences), 2013, 0(5): 6-9
Authors:Feng Longlong Li Xing Li Xiaoche Li Yan
Affiliation:Feng Longlong Li Xing Li Xiaoche Li Yan (l. State Key Laboratory of Hydrology-Water Resources Hydraulic Engineering, Hohai Univ. , Nanjing 210098, China 2. National Engineering Research Center of Water Resources Efficient Utilization Engi- neering Safety, Hohai Univ. , Nanjing 210098, China 3. College of Water Conservancy H ydropower En- gineering, Hohai Univ. , Nanjing 210098, China)
Abstract:In view of that the dam safety monitoring data sets have a certain characteristic of tendency and vol- atility, the grey model and the time series model are combined to use in dam safety monitoring. Firstly, the gray model is used to fit and forecast; and then ARIMA model is built for grey residuals to predict the residu- als; the final combination of two models can be used to predict values. Taking the radial displacements of Xi- aowan arch dam for example, the GM-ARIMA model is established to fit and predict, and then compare with the measured values. The results show that, compared with the traditional GM model, GM-ARIMA model is more accuracy and predictive values are closer to the measured values.
Keywords:GM ARIMA model  dam safety monitoring  fitting  prediction
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号