首页 | 本学科首页   官方微博 | 高级检索  
     

基于谱方法的管内非牛顿流体非定常流动
引用本文:付强. 基于谱方法的管内非牛顿流体非定常流动[J]. 吉首大学学报(自然科学版), 2002, 23(4): 12-18
作者姓名:付强
作者单位:(西南民族学院物理系,四川 成都610041)
基金项目:SupportedbyNaturalScienceFoundationofChina(19832 0 5 0 )andthekeyprojectoftheStateNationalitiesAf fairsCommissionofChina(990 5 )
摘    要:以上随体Maxwell流体为非牛顿流体介质,探索了一种用谱方法解析处理水平圆管内非牛顿流体非定常流动的方法.该非定常问题归结为一个非线性二阶偏微分方程的求解问题.用谱方法将非线性二阶偏微分方程求解问题化为常微分方程组Chebyshev多项式数的近似问题,用Laplac变换法和本征值方法求解常微分方程组得到问题的解析结果.

关 键 词:谱方法  非定常流动  Chebyshev多项式

Unsteady Flow of Non- Newtonian Fluid in Pipe by Spectral Method
Abstract. Unsteady Flow of Non- Newtonian Fluid in Pipe by Spectral Method[J]. Journal of Jishou University(Natural Science Edition), 2002, 23(4): 12-18
Authors:Abstract
Affiliation:(Dept.of Physics,Sowthwest University for Nationalities,Chengdu 610041,Sichuan China)
Abstract:In the present investigation, the unsteady flow of upper - convected Maxwell fluid in a horizontal circularpipe is studied by spectral method. The unsteady problem is mathematically reduced to a partial differential equation ofsecond order. By using spectral method the partial differential equation can be reduced to a system of ordinary differen-tial equations for different terms of Chebyshev polynomials approximations. The ordinary differential equations are solvedby the method of Laplace transform and the eigenvaluemethod that led to an analytical form of the solutions.
Keywords:spectral method  unsteady flow  Chebyshev polynomial
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《吉首大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《吉首大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号