首页 | 本学科首页   官方微博 | 高级检索  
     

产品需求量非平稳时序的ANN-ARMA预测模型
引用本文:采峰,曾凤章. 产品需求量非平稳时序的ANN-ARMA预测模型[J]. 北京理工大学学报, 2007, 27(3): 277-282
作者姓名:采峰  曾凤章
作者单位:北京理工大学,管理与经济学院,北京 100081;北京理工大学,管理与经济学院,北京 100081
摘    要:针对基于非平稳时序的产品需求量预测方法存在的问题,研究了人工神经网络(ANN)与自回归滑动平均(ARMA)模型的集成建模与预测方法. 产品需求量的非平稳时序可分解为确定项和随机项两个部分,用人工神经网络模型拟合确定项,以表示非平稳的变化趋势;用自回归滑动平均模型拟合随机项,以表示平稳的随机成分. 将两个模型的预测值之和作为产品需求量的优化预测值. 仿真结果表明,集成模型的预测精度高于单一的人工神经网络模型.

关 键 词:产品需求量  非平稳时间序列  人工神经网络  自回归滑动平均模型
文章编号:1001-0645(2007)03-0277-06
收稿时间:2006-05-25
修稿时间:2006-05-25

ANN-ARMA Model for Forecasting Product Consumption Based on Non-Stationary Time Series
CAI Feng and ZENG Feng-zhang. ANN-ARMA Model for Forecasting Product Consumption Based on Non-Stationary Time Series[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2007, 27(3): 277-282
Authors:CAI Feng and ZENG Feng-zhang
Affiliation:School of Management and Economics, Belling Institute of Technology, Beijing 100081, China
Abstract:A new model of integrating artificial neural network (ANN) with auto regressive moving average (ARMA) is studied to handle existing problems of forecasting methods of product consumption based on non-stationary time series. Because the non-stationary time series can be divided into the certain and stochastic parts, the ANN-ARMA model is proposed. The certain part that is fitted by the ANN model denotes their non-stationary trend, and the stochastic part that is fitted by the ARMA model denotes their stationary and random component. The sum of forecast values of the ANN model and the ARMA model is considered as the optimal forecast value of future product consumption. A simulation example indicates the forecast precision of the ANN-ARMA model to be superior to that of the ANN model.
Keywords:product consumption  non-stationary time series  artificial neural network  auto regressive moving average model
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号