Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors |
| |
Authors: | Nomura Kenji Ohta Hiromichi Takagi Akihiro Kamiya Toshio Hirano Masahiro Hosono Hideo |
| |
Affiliation: | ERATO-SORST, JST, in Frontier Collaborative Research Center, Mail Box S2-13, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan. |
| |
Abstract: | Transparent electronic devices formed on flexible substrates are expected to meet emerging technological demands where silicon-based electronics cannot provide a solution. Examples of active flexible applications include paper displays and wearable computers. So far, mainly flexible devices based on hydrogenated amorphous silicon (a-Si:H) and organic semiconductors have been investigated. However, the performance of these devices has been insufficient for use as transistors in practical computers and current-driven organic light-emitting diode displays. Fabricating high-performance devices is challenging, owing to a trade-off between processing temperature and device performance. Here, we propose to solve this problem by using a novel semiconducting material--namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)--for the active channel in transparent thin-film transistors (TTFTs). The a-IGZO is deposited on polyethylene terephthalate at room temperature and exhibits Hall effect mobilities exceeding 10 cm2 V(-1) s(-1), which is an order of magnitude larger than for hydrogenated amorphous silicon. TTFTs fabricated on polyethylene terephthalate sheets exhibit saturation mobilities of 6-9 cm2 V(-1) s(-1), and device characteristics are stable during repetitive bending of the TTFT sheet. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|