首页 | 本学科首页   官方微博 | 高级检索  
     

聚类分析在彩色图像量化中的应用
引用本文:凌玲,凌卫新. 聚类分析在彩色图像量化中的应用[J]. 系统仿真学报, 2001, 0(Z2)
作者姓名:凌玲  凌卫新
作者单位:广东工业大学工程与计算机图学教研室,华南理工大学应用数学系 广州510090,广州510640
摘    要:提出了一种基于模式识别技术的彩色图像量化的新算法—基于最小距离最大的快速统计聚类算法(FSCAMMD)。本算法克服了SCA算法对聚类中心初始值选取的不足,给出了最大频度与类内最小距离最大相结合的方法—初始值优选法。实验结果表明,本算法可较大幅度地减少图像量化后的总方差以及颜色失真度,量化效果优于SCA和其它一些聚类量化算法。

关 键 词:聚类分析  图像量化  图象压缩  统计

Applications of Clustering Analysis in Color Image Quantization
LING Ling,LING Wei-xin. Applications of Clustering Analysis in Color Image Quantization[J]. Journal of System Simulation, 2001, 0(Z2)
Authors:LING Ling  LING Wei-xin
Affiliation:LING Ling1,LING Wei-xin2
Abstract:A new algorithm for color image quantization based on the pattern recognition technology is proposed in this paper. This is a fast statistical clustering algorithm based on maximizing minimum discrepancy (FSCAMMD). The algorithm can overcome the shortcomings of the seeking method of initial value of the clustering center of SCA algorithm, and gives a method of combining maximum frequency degree with maximizing minimum discrepancy, that is an optimum seeking method of initial value of clustering center. The experimental results show that both the total mean square deviation and lack fidelity of images quantized by the present algorithm have a relatively big reduction and the effect of color image equalization is better than that of SCA algorithm and other clustering algorithms.
Keywords:clustering analysis  image quantization  image compression  statistics
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号