首页 | 本学科首页   官方微博 | 高级检索  
     

基于曲波变换的自适应图像去噪算法
引用本文:罗忠亮,林土胜. 基于曲波变换的自适应图像去噪算法[J]. 系统工程与电子技术, 2009, 31(3): 515-517
作者姓名:罗忠亮  林土胜
作者单位:1. 华南理工大学电子与信息学院, 广东, 广州, 510641;2. 韶关学院电子与通信工程系, 广东, 韶关, 512005
基金项目:国家自然科学基金,广东省自然科学基金团队项目 
摘    要:曲波变换是一种新的多尺度变换理论,具有各向异性的特征,可以很好地逼近含线奇异的高维函数。利用曲波变换和经验贝叶斯估计的方法,提出一种新的自适应图像去噪方法,在曲波分解的基础上,由贝叶斯决策理论方法来导出估计法则,从而获得贝叶斯估计值。实验结果表明,与其他几种常用的去噪方法相比,本方法去噪后,图像获得较好的视觉效果,同时客观评价指标明显改进,在较大噪声的情况下更能显示出其优势。

关 键 词:图像去噪  曲波变换  贝叶斯估计  自适应
收稿时间:2007-12-03
修稿时间:2008-02-05

Algorithm of adaptive image de-noising based on curvelet transform
LUO Zhong-liang,LIN Tu-sheng. Algorithm of adaptive image de-noising based on curvelet transform[J]. System Engineering and Electronics, 2009, 31(3): 515-517
Authors:LUO Zhong-liang  LIN Tu-sheng
Affiliation:1. School of Electronics and Information, South China Univ. of Technology, Guangzhou 510641, China;2. Dept. of Electronics and Communication Engineering, Shaoguan Coll., Shaoguan 512005, China
Abstract:Curvelet is a new multiscale transform theory,which has the characteristics of anisotropy.It can approach a high dimensional function containing line singularity better.Based on curvelet decomposition,Bayesis estimation is obtained by the estimate rule derived from Bayesis theory is obtained.A new adaptive method of image de-noising based on the curvelet domain and empirical Bayesis estimation is proposed.The experiments show that compared with the other de-noising methods,the proposed approach can obtain better visual quality and improve objective measurements,which can demonstrate the advantage under the larger noise situation.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号