首页 | 本学科首页   官方微博 | 高级检索  
     

模糊神经网络与证据理论的飞机目标敌我识别
引用本文:李勇,王德功,杨佐龙. 模糊神经网络与证据理论的飞机目标敌我识别[J]. 吉林大学学报(信息科学版), 2012, 30(1): 78-82
作者姓名:李勇  王德功  杨佐龙
作者单位:空军航空大学 航空电子工程系,长春 ,130022
摘    要:为满足复杂环境下目标敌我属性识别能力,提出了一种基于模糊神经网络(FNN:Fuzzy Neural Networks)和证据理论的新敌我识别方法。该方法利用模糊神经网络和证据理
论信息的处理能力,将敌我识别器(IFF:Identification Friend -or-Foe)、电子支援措施(ESM:Electronic Warfare Support Measure)、雷达及红外获取的信息融合,进行敌我识别。
仿真结果表明,该方法的识别能力明显优于单一模糊神经网络分类器,识别率达0.994,同时具有很强的容错性和一定的抗干扰能力,更适合战场需要。

关 键 词:模糊神经网络  证据理论  数据融合  敌我识别  
收稿时间:2011-11-02

Fuzzy Neural Networks and D-S Theory Used in Friend and Foe Identification of Aircraft Target
LI Yong,WANG De-gong,YANG Zuo-long. Fuzzy Neural Networks and D-S Theory Used in Friend and Foe Identification of Aircraft Target[J]. Journal of Jilin University:Information Sci Ed, 2012, 30(1): 78-82
Authors:LI Yong  WANG De-gong  YANG Zuo-long
Affiliation:Department of Aviation Electronic Engineering,Aviation University of Airforce,Changchun |130022,China
Abstract:In order to satisfiy the complex battlefield environment,we raise a n ew method to realize friend and foe identification.Using the ablity of fuzzy neural networks and D-S theory in information processing,fusing the information ac q uired from IFF(Identification Friend-or-Foe),ESM(Electronic Warfare Support M easure),radar and infrared,the identification is realized.The simulation results show that the recognition abilit y of the method is superior to a single FNN(Fuzzy Neural Networks),classifier r ecognition rate is 0.978.And it also has a strong fault-tolerance and a certain d egree of immunity,it better suited to the battlefield needs.
Keywords:fuzzy neural networks  D-S theory  data fusion  frien d and foe identification
本文献已被 CNKI 等数据库收录!
点击此处可从《吉林大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号