首页 | 本学科首页   官方微博 | 高级检索  
     

广义神经传播方程最低阶新混合元格式的高精度分析
引用本文:樊明智,王芬玲,石东洋. 广义神经传播方程最低阶新混合元格式的高精度分析[J]. 山东大学学报(理学版), 2015, 50(8): 78-89. DOI: 10.6040/j.issn.1671-9352.0.2014.410
作者姓名:樊明智  王芬玲  石东洋
作者单位:1. 许昌学院数学与统计学院, 河南 许昌 461000;
2. 郑州大学数学与统计学院, 河南 郑州 450001
基金项目:国家自然科学基金(11271340); 河南省教育厅自然科学基金项目(14A110009);许昌市科技局项目(1404009)
摘    要:利用双线性元和Nédéle?s元,对广义神经传播方程建立了最低阶自然满足Brezzi-Babuška条件的新混合元逼近格式.基于该混合元的高精度分析和插值后处理算子技术,在半离散格式下分别导出了原始变量的H1模及中间变量的L2模的超逼近性质和整体超收敛结果.当f(u)=f(X)时建立了一个具有二阶精度的全离散逼近格式,分别得到了原始变量的H1模的超逼近性和中间变量的L2模的最优误差估计.

关 键 词:半离散和全离散格式  超逼近性和超收敛结果  广义神经传播方程  新混合元  
收稿时间:2014-09-16

High accuracy analysis of the lowest order new mixed finite element scheme for generalized nerve conductive equations
FAN Ming-zhi,WANG Fen-ling,SHI Dong-yang. High accuracy analysis of the lowest order new mixed finite element scheme for generalized nerve conductive equations[J]. Journal of Shandong University, 2015, 50(8): 78-89. DOI: 10.6040/j.issn.1671-9352.0.2014.410
Authors:FAN Ming-zhi  WANG Fen-ling  SHI Dong-yang
Affiliation:1. School of Mathematics and Statistics, Xuchang University, Xuchang 461000, Henan, China;
2. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, Henan, China
Abstract:A lowest order new mixed element approximate scheme with the bilinear element and Nédélec?s element for the generalized nerve conductive equations is proposed, which can satisfy Brezzi-Babuška condition automatically. Based on high accuracy analysis of the mixed element and interpolation post-processing technique, the superclose properties and superconvergence results of original variable in H1-norm and intermediate variable in L2-norm are deduced separately for semi-discrete scheme. At the same time, a second order fully-discrete scheme when is f(u) equal to f(X) is established and the superclose properties and the optimal order error estimates of original variable in H1-norm and intermediate variable in L2-norm are separately derived.
Keywords:superclose properties and superconvergence results  new mixed element  the generalized nerve conductive equations  semi-discrete and fully-discrete schemes  
本文献已被 万方数据 等数据库收录!
点击此处可从《山东大学学报(理学版)》浏览原始摘要信息
点击此处可从《山东大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号