首页 | 本学科首页   官方微博 | 高级检索  
     


Thermally fluctuating superconductors in two dimensions
Authors:Sachdev   Starykh
Affiliation:Department of Physics, Yale University, New Haven, Connecticut 06520-8120, USA. subir.sachdev@yale-edu
Abstract:In many two-dimensional superconducting systems, such as Josephson-junction arrays, granular superconducting films, and the high-temperature superconductors, it appears that the electrons bind into Cooper pairs below a pairing temperature (T(P)) that is well above the Kosterlitz-Thouless temperature (T(KT)) the temperature below which there is long-range superconducting order). The electron dynamics at temperatures between T(KT) and T(P) involve a complex interplay of thermal and quantum fluctuations, for which no quantitative theory exists. Here we report numerical results for this region, by exploiting its proximity to a T = 0 superconductor-insulator quantum phase transition. This quantum critical point need not be experimentally accessible for our results to apply. We characterize the static, thermodynamic properties by a single dimensionless parameter, gamma(T). Quantitative and universal results are obtained for the frequency dependence of the conductivity, which are dependent only upon gamma(T) and fundamental constants of nature.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号