首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于差异演化概率神经网络的电气构件分类研究
引用本文:林铭德,戴一璟.基于差异演化概率神经网络的电气构件分类研究[J].贵州师范大学学报(自然科学版),2013,31(1):98-102,110.
作者姓名:林铭德  戴一璟
作者单位:1. 福建工程学院计算机与信息科学系,福建福州,350108
2. 福建工程学院管理学院,福建福州,350108
基金项目:福建省科技厅重点项目(2009H0002);福建工程学院教研项目(TMC2010-5-32)
摘    要:不变矩特征具有较好的几何图形物理含义,提出了一种对安装工程电气构件利用神经网络分类识别的方法。通过对安装工程图分割不同的电气构件,计算电气构件的不变矩特征,对特征进行矢量归一处理,引入差异演化算法优化平滑因子,改进概率神经网络作为分类器对电气构件进行分类。实验结果证明方法的有效性和准确性,对于安装工程量计算自动化具有一定的实用性和参考价值。

关 键 词:差异演化  不变矩  概率神经网络  模式识别

Research on classification of electrical components based on differentia evolution and PNN
LIN Ming-de , DAI Yi-jing.Research on classification of electrical components based on differentia evolution and PNN[J].Journal of Guizhou Normal University(Natural Sciences),2013,31(1):98-102,110.
Authors:LIN Ming-de  DAI Yi-jing
Institution:jing2(1.Department of Computer and Information Science,Fujian University of Technology,Fuzhou,Fujian 350108,China; 2.Management College,Fujian University of Technology,Fuzhou,Fujian 350108,China)
Abstract:Moment invariant feature has good geometric and physical meaning,proposed a method for electrical components of installation engineering using neural network to classification and recognition.Through the installation engineering of graph partitioning different electrical components,Calculation of the electrical component of moment invariant feature,normalization processed feature vector,using differentia evolution algorithm to optimize the smooth factor,modified probabilistic neural network as classifier of electrical components.Experimental results show that the method is effective and accurate,for installation engineering quantity calculation of automation has practicability and reference value.
Keywords:differentia evolution  moment invariants  probabilistic neural network(PNN)  pattern recognition
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号