首页 | 本学科首页   官方微博 | 高级检索  
     

用双层位势求解Neumann外问题的Galerkin边界元解法
引用本文:张守贵 祝家麟 董海云. 用双层位势求解Neumann外问题的Galerkin边界元解法[J]. 重庆大学学报(自然科学版), 2006, 29(3): 103-106
作者姓名:张守贵 祝家麟 董海云
作者单位:重庆师范大学,数计学院,重庆,400047;重庆大学,数理学院,重庆,400030
摘    要:对二维Laplace方程的Neumann问题采用双层位势来求解时,要出现超强奇异积分.对得出的与之等价的边界边分方程,通过引入边界旋度,经过一系列推导,得到二维情况边界旋度的具体表达式,使超强奇异性转化为弱奇异的积分.计算时采用线性单元,利用Galerkin边界元方法求解.在计算单元刚度矩阵时,对二重积分的第一重使用精确积分,第二重使用数值积分.数值算例验证了这种方法的有效性和实用性.

关 键 词:边界元  双层位势  Galerkin方法  Laplace方程  Neumann外问题
文章编号:1000-582X(2006)03-0103-04
收稿时间:2005-11-22
修稿时间:2005-11-22

Galerkin Boundary Element Method for Two-dimension Laplace Equation of Neumman Condition
ZHANG Shou-gui,ZHU Jia-lin,DONG Hai-yun. Galerkin Boundary Element Method for Two-dimension Laplace Equation of Neumman Condition[J]. Journal of Chongqing University(Natural Science Edition), 2006, 29(3): 103-106
Authors:ZHANG Shou-gui  ZHU Jia-lin  DONG Hai-yun
Affiliation:1. College of Mathematics and Computer Science, Chongqing Normal University, Chongqing 400047, China; 2. College of Mathematics and Physics, Chongqing University, Chongqing 400030, China
Abstract:The authors apply the Galenkin variational equation to solve the integral equation with hyper singularity, which can be deduced from the double layer solution for Neumann problem of Laplace equation. The scheme of partial integration in the sense of distributions is introduced to reduce the hyper singularity integral into a weak one with the boundary rotation of unknown function. The numerical implementation with linear boundary elements is presented. The numerical examples illustrate the feasibility and efficiency of the method.
Keywords:hypersingular integral   double layer potential   galerkin boundary element method   laplace equation    neumann exterior problem
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号