首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Integrated Bi2O3 nanostructure modified with Au nanoparticles for enhanced photocatalytic activity under visible light irradiation
Authors:Hankwon Lim and Sher Bahadur Rawal
Institution:Department of Advanced Materials and Chemical Engineering, Catholic University of Daegu, Gyeongsan 712-702 Republic of Korea and Department of Advanced Materials and Chemical Engineering, Catholic University of Daegu, Gyeongsan 712-702 Republic of Korea
Abstract:An integrated Bi2O3 (i-Bi2O3) nanostructure with a particle size 10 nm inducing agglomerated structure were synthesized by dissolving bismuth nitrate pentahydrate in diethylene glycol at 180 °C with post heat treatment. The prepared i-Bi2O3 nanostructures were employed for the construction of Au/i-Bi2O3 composite system and characterized by X-ray diffraction pattern, UV–visible diffuse reflectance spectroscopy (DRS), and transmission electron microscopy, X-ray photoemission spectroscopy (XPS) and Energy dispersive X-ray spectroscopy (EDS). The i-Bi2O3 nanostructure and Au/i-Bi2O3 composite system were found to exhibit high photocatalytic activity than commercial Bi2O3 in decomposing salicylic acid under visible light irradiation. The high catalytic activity of i-Bi2O3 nanostructure was deduced to be caused by charge separation facilitated by electron hopping between the particles within the integrated structure and space-charge separation between i-Bi2O3 and Au. The charge separation behavior in i-Bi2O3 nanostructure was further bolstered by comparing the measured. OH radical produced in the solution with i-Bi2O3 nanostructure, commercial Bi2O3 and Au/i-Bi2O3 composite which readily react with 1,4-terephthalic acid (TA) inducing 2-hydroxy terephthalic acid (TAOH) that shows unique fluorescence peak at 426 nm. The space-charge separation between i-Bi2O3 and Au was confirmed by measuring the electron spin resonance (ESR) spectra.
Keywords:Integrated Bi2O3 nanostructure Organic pollutant mineralization Photocatalyst Salicylic Acid (SA) Visible light
本文献已被 CNKI ScienceDirect 等数据库收录!
点击此处可从《自然科学进展(英文版)》浏览原始摘要信息
点击此处可从《自然科学进展(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号