首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nonlinear electrophoresis of dielectric and metal spheres in a nematic liquid crystal
Authors:Lavrentovich Oleg D  Lazo Israel  Pishnyak Oleg P
Institution:Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, USA. olavrent@kent.edu
Abstract:Electrophoresis is a motion of charged dispersed particles relative to a fluid in a uniform electric field. The effect is widely used to separate macromolecules, to assemble colloidal structures and to transport particles in nano- and microfluidic devices and displays. Typically, the fluid is isotropic (for example, water) and the electrophoretic velocity is linearly proportional to the electric field. In linear electrophoresis, only a direct-current (d.c.) field can drive the particles. An alternating-current (a.c.) field is more desirable because it makes it possible to overcome problems such as electrolysis and the absence of steady flows. Here we show that when the electrophoresis is performed in a liquid-crystalline nematic fluid, the effect becomes strongly nonlinear, with a velocity component that is quadratic in the applied voltage and has a direction that generally differs from the direction of linear velocity. The new phenomenon is caused by distortions of the liquid-crystal orientation around the particle that break the fore-aft (or left-right) symmetry. The effect makes it possible to transport both charged and neutral particles, even when the particles themselves are perfectly symmetric (spherical), thus allowing new approaches in display technologies, colloidal assembly and separation, microfluidic and micromotor applications.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号